Metamath Proof Explorer


Theorem mnringvscadOLD

Description: Obsolete version of mnringvscad as of 1-Nov-2024. The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses mnringvscad.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringvscad.2 B = Base M
mnringvscad.3 V = R freeLMod B
mnringvscad.4 φ R U
mnringvscad.5 φ M W
Assertion mnringvscadOLD φ V = F

Proof

Step Hyp Ref Expression
1 mnringvscad.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringvscad.2 B = Base M
3 mnringvscad.3 V = R freeLMod B
4 mnringvscad.4 φ R U
5 mnringvscad.5 φ M W
6 df-vsca 𝑠 = Slot 6
7 6nn 6
8 3re 3
9 3lt6 3 < 6
10 8 9 gtneii 6 3
11 mulrndx ndx = 3
12 10 11 neeqtrri 6 ndx
13 1 6 7 12 2 3 4 5 mnringnmulrdOLD φ V = F