Metamath Proof Explorer


Theorem mnringvscadOLD

Description: Obsolete version of mnringvscad as of 1-Nov-2024. The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses mnringvscad.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringvscad.2 𝐵 = ( Base ‘ 𝑀 )
mnringvscad.3 𝑉 = ( 𝑅 freeLMod 𝐵 )
mnringvscad.4 ( 𝜑𝑅𝑈 )
mnringvscad.5 ( 𝜑𝑀𝑊 )
Assertion mnringvscadOLD ( 𝜑 → ( ·𝑠𝑉 ) = ( ·𝑠𝐹 ) )

Proof

Step Hyp Ref Expression
1 mnringvscad.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnringvscad.2 𝐵 = ( Base ‘ 𝑀 )
3 mnringvscad.3 𝑉 = ( 𝑅 freeLMod 𝐵 )
4 mnringvscad.4 ( 𝜑𝑅𝑈 )
5 mnringvscad.5 ( 𝜑𝑀𝑊 )
6 df-vsca ·𝑠 = Slot 6
7 6nn 6 ∈ ℕ
8 3re 3 ∈ ℝ
9 3lt6 3 < 6
10 8 9 gtneii 6 ≠ 3
11 mulrndx ( .r ‘ ndx ) = 3
12 10 11 neeqtrri 6 ≠ ( .r ‘ ndx )
13 1 6 7 12 2 3 4 5 mnringnmulrdOLD ( 𝜑 → ( ·𝑠𝑉 ) = ( ·𝑠𝐹 ) )