Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Monoid rings
mnringvscadOLD
Metamath Proof Explorer
Description: Obsolete version of mnringvscad as of 1-Nov-2024. The scalar product
of a monoid ring. (Contributed by Rohan Ridenour , 14-May-2024)
(New usage is discouraged.) (Proof modification is discouraged.)
Ref
Expression
Hypotheses
mnringvscad.1
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringvscad.2
⊢ 𝐵 = ( Base ‘ 𝑀 )
mnringvscad.3
⊢ 𝑉 = ( 𝑅 freeLMod 𝐵 )
mnringvscad.4
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 )
mnringvscad.5
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 )
Assertion
mnringvscadOLD
⊢ ( 𝜑 → ( · 𝑠 ‘ 𝑉 ) = ( · 𝑠 ‘ 𝐹 ) )
Proof
Step
Hyp
Ref
Expression
1
mnringvscad.1
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 )
2
mnringvscad.2
⊢ 𝐵 = ( Base ‘ 𝑀 )
3
mnringvscad.3
⊢ 𝑉 = ( 𝑅 freeLMod 𝐵 )
4
mnringvscad.4
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 )
5
mnringvscad.5
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 )
6
df-vsca
⊢ · 𝑠 = Slot 6
7
6nn
⊢ 6 ∈ ℕ
8
3re
⊢ 3 ∈ ℝ
9
3lt6
⊢ 3 < 6
10
8 9
gtneii
⊢ 6 ≠ 3
11
mulrndx
⊢ ( .r ‘ ndx ) = 3
12
10 11
neeqtrri
⊢ 6 ≠ ( .r ‘ ndx )
13
1 6 7 12 2 3 4 5
mnringnmulrdOLD
⊢ ( 𝜑 → ( · 𝑠 ‘ 𝑉 ) = ( · 𝑠 ‘ 𝐹 ) )