Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Rohan Ridenour Monoid rings mnringvscadOLD  
				
		 
		
			
		 
		Description:   Obsolete version of mnringvscad  as of 1-Nov-2024.  The scalar product
       of a monoid ring.  (Contributed by Rohan Ridenour , 14-May-2024) 
       (New usage is discouraged.)   (Proof modification is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mnringvscad.1 ⊢  𝐹   =  ( 𝑅   MndRing  𝑀  )  
					
						mnringvscad.2 ⊢  𝐵   =  ( Base ‘ 𝑀  )  
					
						mnringvscad.3 ⊢  𝑉   =  ( 𝑅   freeLMod  𝐵  )  
					
						mnringvscad.4 ⊢  ( 𝜑   →  𝑅   ∈  𝑈  )  
					
						mnringvscad.5 ⊢  ( 𝜑   →  𝑀   ∈  𝑊  )  
				
					Assertion 
					mnringvscadOLD ⊢   ( 𝜑   →  (  · 𝑠   ‘ 𝑉  )  =  (  · 𝑠   ‘ 𝐹  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mnringvscad.1 ⊢  𝐹   =  ( 𝑅   MndRing  𝑀  )  
						
							2 
								
							 
							mnringvscad.2 ⊢  𝐵   =  ( Base ‘ 𝑀  )  
						
							3 
								
							 
							mnringvscad.3 ⊢  𝑉   =  ( 𝑅   freeLMod  𝐵  )  
						
							4 
								
							 
							mnringvscad.4 ⊢  ( 𝜑   →  𝑅   ∈  𝑈  )  
						
							5 
								
							 
							mnringvscad.5 ⊢  ( 𝜑   →  𝑀   ∈  𝑊  )  
						
							6 
								
							 
							df-vsca ⊢   · 𝑠    =  Slot  6  
						
							7 
								
							 
							6nn ⊢  6  ∈  ℕ  
						
							8 
								
							 
							3re ⊢  3  ∈  ℝ  
						
							9 
								
							 
							3lt6 ⊢  3  <  6  
						
							10 
								8  9 
							 
							gtneii ⊢  6  ≠  3  
						
							11 
								
							 
							mulrndx ⊢  ( .r  ‘ ndx )  =  3  
						
							12 
								10  11 
							 
							neeqtrri ⊢  6  ≠  ( .r  ‘ ndx )  
						
							13 
								1  6  7  12  2  3  4  5 
							 
							mnringnmulrdOLD ⊢  ( 𝜑   →  (  · 𝑠   ‘ 𝑉  )  =  (  · 𝑠   ‘ 𝐹  ) )