Metamath Proof Explorer


Theorem mnringlmodd

Description: Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringlmodd.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringlmodd.2 ( 𝜑𝑅 ∈ Ring )
mnringlmodd.3 ( 𝜑𝑀𝑈 )
Assertion mnringlmodd ( 𝜑𝐹 ∈ LMod )

Proof

Step Hyp Ref Expression
1 mnringlmodd.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnringlmodd.2 ( 𝜑𝑅 ∈ Ring )
3 mnringlmodd.3 ( 𝜑𝑀𝑈 )
4 fvexd ( 𝜑 → ( Base ‘ 𝑀 ) ∈ V )
5 eqid ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) = ( 𝑅 freeLMod ( Base ‘ 𝑀 ) )
6 5 frlmlmod ( ( 𝑅 ∈ Ring ∧ ( Base ‘ 𝑀 ) ∈ V ) → ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ∈ LMod )
7 2 4 6 syl2anc ( 𝜑 → ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ∈ LMod )
8 eqidd ( 𝜑 → ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) )
9 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
10 eqid ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) )
11 1 9 5 10 2 3 mnringbased ( 𝜑 → ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( Base ‘ 𝐹 ) )
12 1 9 5 2 3 mnringaddgd ( 𝜑 → ( +g ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( +g𝐹 ) )
13 12 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) 𝑦 ) = ( 𝑥 ( +g𝐹 ) 𝑦 ) )
14 5 frlmsca ( ( 𝑅 ∈ Ring ∧ ( Base ‘ 𝑀 ) ∈ V ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) )
15 2 4 14 syl2anc ( 𝜑𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) )
16 1 2 3 mnringscad ( 𝜑𝑅 = ( Scalar ‘ 𝐹 ) )
17 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
18 1 9 5 2 3 mnringvscad ( 𝜑 → ( ·𝑠 ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( ·𝑠𝐹 ) )
19 18 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) 𝑦 ) = ( 𝑥 ( ·𝑠𝐹 ) 𝑦 ) )
20 8 11 13 15 16 17 19 lmodpropd ( 𝜑 → ( ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ∈ LMod ↔ 𝐹 ∈ LMod ) )
21 7 20 mpbid ( 𝜑𝐹 ∈ LMod )