| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringlmodd.1 | ⊢ 𝐹  =  ( 𝑅  MndRing  𝑀 ) | 
						
							| 2 |  | mnringlmodd.2 | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | mnringlmodd.3 | ⊢ ( 𝜑  →  𝑀  ∈  𝑈 ) | 
						
							| 4 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝑀 )  ∈  V ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) )  =  ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) | 
						
							| 6 | 5 | frlmlmod | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( Base ‘ 𝑀 )  ∈  V )  →  ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) )  ∈  LMod ) | 
						
							| 7 | 2 4 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) )  ∈  LMod ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) )  =  ( Base ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) )  =  ( Base ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) ) | 
						
							| 11 | 1 9 5 10 2 3 | mnringbased | ⊢ ( 𝜑  →  ( Base ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) )  =  ( Base ‘ 𝐹 ) ) | 
						
							| 12 | 1 9 5 2 3 | mnringaddgd | ⊢ ( 𝜑  →  ( +g ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) )  =  ( +g ‘ 𝐹 ) ) | 
						
							| 13 | 12 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) ) ) )  →  ( 𝑥 ( +g ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) | 
						
							| 14 | 5 | frlmsca | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( Base ‘ 𝑀 )  ∈  V )  →  𝑅  =  ( Scalar ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) ) ) | 
						
							| 15 | 2 4 14 | syl2anc | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) ) ) | 
						
							| 16 | 1 2 3 | mnringscad | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝐹 ) ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 18 | 1 9 5 2 3 | mnringvscad | ⊢ ( 𝜑  →  (  ·𝑠  ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) )  =  (  ·𝑠  ‘ 𝐹 ) ) | 
						
							| 19 | 18 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) ) ) )  →  ( 𝑥 (  ·𝑠  ‘ ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) ) ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝐹 ) 𝑦 ) ) | 
						
							| 20 | 8 11 13 15 16 17 19 | lmodpropd | ⊢ ( 𝜑  →  ( ( 𝑅  freeLMod  ( Base ‘ 𝑀 ) )  ∈  LMod  ↔  𝐹  ∈  LMod ) ) | 
						
							| 21 | 7 20 | mpbid | ⊢ ( 𝜑  →  𝐹  ∈  LMod ) |