| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnringlmodd.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
| 2 |
|
mnringlmodd.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 3 |
|
mnringlmodd.3 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
| 4 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑀 ) ∈ V ) |
| 5 |
|
eqid |
⊢ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) = ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) |
| 6 |
5
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ ( Base ‘ 𝑀 ) ∈ V ) → ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ∈ LMod ) |
| 7 |
2 4 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ∈ LMod ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) |
| 11 |
1 9 5 10 2 3
|
mnringbased |
⊢ ( 𝜑 → ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( Base ‘ 𝐹 ) ) |
| 12 |
1 9 5 2 3
|
mnringaddgd |
⊢ ( 𝜑 → ( +g ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( +g ‘ 𝐹 ) ) |
| 13 |
12
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) |
| 14 |
5
|
frlmsca |
⊢ ( ( 𝑅 ∈ Ring ∧ ( Base ‘ 𝑀 ) ∈ V ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) |
| 15 |
2 4 14
|
syl2anc |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) |
| 16 |
1 2 3
|
mnringscad |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 18 |
1 9 5 2 3
|
mnringvscad |
⊢ ( 𝜑 → ( ·𝑠 ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) = ( ·𝑠 ‘ 𝐹 ) ) |
| 19 |
18
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐹 ) 𝑦 ) ) |
| 20 |
8 11 13 15 16 17 19
|
lmodpropd |
⊢ ( 𝜑 → ( ( 𝑅 freeLMod ( Base ‘ 𝑀 ) ) ∈ LMod ↔ 𝐹 ∈ LMod ) ) |
| 21 |
7 20
|
mpbid |
⊢ ( 𝜑 → 𝐹 ∈ LMod ) |