| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnringlmodd.1 |
|- F = ( R MndRing M ) |
| 2 |
|
mnringlmodd.2 |
|- ( ph -> R e. Ring ) |
| 3 |
|
mnringlmodd.3 |
|- ( ph -> M e. U ) |
| 4 |
|
fvexd |
|- ( ph -> ( Base ` M ) e. _V ) |
| 5 |
|
eqid |
|- ( R freeLMod ( Base ` M ) ) = ( R freeLMod ( Base ` M ) ) |
| 6 |
5
|
frlmlmod |
|- ( ( R e. Ring /\ ( Base ` M ) e. _V ) -> ( R freeLMod ( Base ` M ) ) e. LMod ) |
| 7 |
2 4 6
|
syl2anc |
|- ( ph -> ( R freeLMod ( Base ` M ) ) e. LMod ) |
| 8 |
|
eqidd |
|- ( ph -> ( Base ` ( R freeLMod ( Base ` M ) ) ) = ( Base ` ( R freeLMod ( Base ` M ) ) ) ) |
| 9 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 10 |
|
eqid |
|- ( Base ` ( R freeLMod ( Base ` M ) ) ) = ( Base ` ( R freeLMod ( Base ` M ) ) ) |
| 11 |
1 9 5 10 2 3
|
mnringbased |
|- ( ph -> ( Base ` ( R freeLMod ( Base ` M ) ) ) = ( Base ` F ) ) |
| 12 |
1 9 5 2 3
|
mnringaddgd |
|- ( ph -> ( +g ` ( R freeLMod ( Base ` M ) ) ) = ( +g ` F ) ) |
| 13 |
12
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( R freeLMod ( Base ` M ) ) ) /\ y e. ( Base ` ( R freeLMod ( Base ` M ) ) ) ) ) -> ( x ( +g ` ( R freeLMod ( Base ` M ) ) ) y ) = ( x ( +g ` F ) y ) ) |
| 14 |
5
|
frlmsca |
|- ( ( R e. Ring /\ ( Base ` M ) e. _V ) -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) ) |
| 15 |
2 4 14
|
syl2anc |
|- ( ph -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) ) |
| 16 |
1 2 3
|
mnringscad |
|- ( ph -> R = ( Scalar ` F ) ) |
| 17 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 18 |
1 9 5 2 3
|
mnringvscad |
|- ( ph -> ( .s ` ( R freeLMod ( Base ` M ) ) ) = ( .s ` F ) ) |
| 19 |
18
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` ( R freeLMod ( Base ` M ) ) ) ) ) -> ( x ( .s ` ( R freeLMod ( Base ` M ) ) ) y ) = ( x ( .s ` F ) y ) ) |
| 20 |
8 11 13 15 16 17 19
|
lmodpropd |
|- ( ph -> ( ( R freeLMod ( Base ` M ) ) e. LMod <-> F e. LMod ) ) |
| 21 |
7 20
|
mpbid |
|- ( ph -> F e. LMod ) |