Metamath Proof Explorer


Theorem mnringlmodd

Description: Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringlmodd.1
|- F = ( R MndRing M )
mnringlmodd.2
|- ( ph -> R e. Ring )
mnringlmodd.3
|- ( ph -> M e. U )
Assertion mnringlmodd
|- ( ph -> F e. LMod )

Proof

Step Hyp Ref Expression
1 mnringlmodd.1
 |-  F = ( R MndRing M )
2 mnringlmodd.2
 |-  ( ph -> R e. Ring )
3 mnringlmodd.3
 |-  ( ph -> M e. U )
4 fvexd
 |-  ( ph -> ( Base ` M ) e. _V )
5 eqid
 |-  ( R freeLMod ( Base ` M ) ) = ( R freeLMod ( Base ` M ) )
6 5 frlmlmod
 |-  ( ( R e. Ring /\ ( Base ` M ) e. _V ) -> ( R freeLMod ( Base ` M ) ) e. LMod )
7 2 4 6 syl2anc
 |-  ( ph -> ( R freeLMod ( Base ` M ) ) e. LMod )
8 eqidd
 |-  ( ph -> ( Base ` ( R freeLMod ( Base ` M ) ) ) = ( Base ` ( R freeLMod ( Base ` M ) ) ) )
9 eqid
 |-  ( Base ` M ) = ( Base ` M )
10 eqid
 |-  ( Base ` ( R freeLMod ( Base ` M ) ) ) = ( Base ` ( R freeLMod ( Base ` M ) ) )
11 1 9 5 10 2 3 mnringbased
 |-  ( ph -> ( Base ` ( R freeLMod ( Base ` M ) ) ) = ( Base ` F ) )
12 1 9 5 2 3 mnringaddgd
 |-  ( ph -> ( +g ` ( R freeLMod ( Base ` M ) ) ) = ( +g ` F ) )
13 12 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` ( R freeLMod ( Base ` M ) ) ) /\ y e. ( Base ` ( R freeLMod ( Base ` M ) ) ) ) ) -> ( x ( +g ` ( R freeLMod ( Base ` M ) ) ) y ) = ( x ( +g ` F ) y ) )
14 5 frlmsca
 |-  ( ( R e. Ring /\ ( Base ` M ) e. _V ) -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) )
15 2 4 14 syl2anc
 |-  ( ph -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) )
16 1 2 3 mnringscad
 |-  ( ph -> R = ( Scalar ` F ) )
17 eqid
 |-  ( Base ` R ) = ( Base ` R )
18 1 9 5 2 3 mnringvscad
 |-  ( ph -> ( .s ` ( R freeLMod ( Base ` M ) ) ) = ( .s ` F ) )
19 18 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` ( R freeLMod ( Base ` M ) ) ) ) ) -> ( x ( .s ` ( R freeLMod ( Base ` M ) ) ) y ) = ( x ( .s ` F ) y ) )
20 8 11 13 15 16 17 19 lmodpropd
 |-  ( ph -> ( ( R freeLMod ( Base ` M ) ) e. LMod <-> F e. LMod ) )
21 7 20 mpbid
 |-  ( ph -> F e. LMod )