| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringlmodd.1 |  |-  F = ( R MndRing M ) | 
						
							| 2 |  | mnringlmodd.2 |  |-  ( ph -> R e. Ring ) | 
						
							| 3 |  | mnringlmodd.3 |  |-  ( ph -> M e. U ) | 
						
							| 4 |  | fvexd |  |-  ( ph -> ( Base ` M ) e. _V ) | 
						
							| 5 |  | eqid |  |-  ( R freeLMod ( Base ` M ) ) = ( R freeLMod ( Base ` M ) ) | 
						
							| 6 | 5 | frlmlmod |  |-  ( ( R e. Ring /\ ( Base ` M ) e. _V ) -> ( R freeLMod ( Base ` M ) ) e. LMod ) | 
						
							| 7 | 2 4 6 | syl2anc |  |-  ( ph -> ( R freeLMod ( Base ` M ) ) e. LMod ) | 
						
							| 8 |  | eqidd |  |-  ( ph -> ( Base ` ( R freeLMod ( Base ` M ) ) ) = ( Base ` ( R freeLMod ( Base ` M ) ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 10 |  | eqid |  |-  ( Base ` ( R freeLMod ( Base ` M ) ) ) = ( Base ` ( R freeLMod ( Base ` M ) ) ) | 
						
							| 11 | 1 9 5 10 2 3 | mnringbased |  |-  ( ph -> ( Base ` ( R freeLMod ( Base ` M ) ) ) = ( Base ` F ) ) | 
						
							| 12 | 1 9 5 2 3 | mnringaddgd |  |-  ( ph -> ( +g ` ( R freeLMod ( Base ` M ) ) ) = ( +g ` F ) ) | 
						
							| 13 | 12 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( R freeLMod ( Base ` M ) ) ) /\ y e. ( Base ` ( R freeLMod ( Base ` M ) ) ) ) ) -> ( x ( +g ` ( R freeLMod ( Base ` M ) ) ) y ) = ( x ( +g ` F ) y ) ) | 
						
							| 14 | 5 | frlmsca |  |-  ( ( R e. Ring /\ ( Base ` M ) e. _V ) -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) ) | 
						
							| 15 | 2 4 14 | syl2anc |  |-  ( ph -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) ) | 
						
							| 16 | 1 2 3 | mnringscad |  |-  ( ph -> R = ( Scalar ` F ) ) | 
						
							| 17 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 18 | 1 9 5 2 3 | mnringvscad |  |-  ( ph -> ( .s ` ( R freeLMod ( Base ` M ) ) ) = ( .s ` F ) ) | 
						
							| 19 | 18 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` ( R freeLMod ( Base ` M ) ) ) ) ) -> ( x ( .s ` ( R freeLMod ( Base ` M ) ) ) y ) = ( x ( .s ` F ) y ) ) | 
						
							| 20 | 8 11 13 15 16 17 19 | lmodpropd |  |-  ( ph -> ( ( R freeLMod ( Base ` M ) ) e. LMod <-> F e. LMod ) ) | 
						
							| 21 | 7 20 | mpbid |  |-  ( ph -> F e. LMod ) |