Step |
Hyp |
Ref |
Expression |
1 |
|
mnringscad.1 |
|- F = ( R MndRing M ) |
2 |
|
mnringscad.2 |
|- ( ph -> R e. U ) |
3 |
|
mnringscad.3 |
|- ( ph -> M e. W ) |
4 |
|
fvex |
|- ( Base ` M ) e. _V |
5 |
|
eqid |
|- ( R freeLMod ( Base ` M ) ) = ( R freeLMod ( Base ` M ) ) |
6 |
5
|
frlmsca |
|- ( ( R e. U /\ ( Base ` M ) e. _V ) -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) ) |
7 |
2 4 6
|
sylancl |
|- ( ph -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) ) |
8 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
9 |
|
scandxnmulrndx |
|- ( Scalar ` ndx ) =/= ( .r ` ndx ) |
10 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
11 |
1 8 9 10 5 2 3
|
mnringnmulrd |
|- ( ph -> ( Scalar ` ( R freeLMod ( Base ` M ) ) ) = ( Scalar ` F ) ) |
12 |
7 11
|
eqtrd |
|- ( ph -> R = ( Scalar ` F ) ) |