Metamath Proof Explorer


Theorem mnringscad

Description: The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringscad.1
|- F = ( R MndRing M )
mnringscad.2
|- ( ph -> R e. U )
mnringscad.3
|- ( ph -> M e. W )
Assertion mnringscad
|- ( ph -> R = ( Scalar ` F ) )

Proof

Step Hyp Ref Expression
1 mnringscad.1
 |-  F = ( R MndRing M )
2 mnringscad.2
 |-  ( ph -> R e. U )
3 mnringscad.3
 |-  ( ph -> M e. W )
4 fvex
 |-  ( Base ` M ) e. _V
5 eqid
 |-  ( R freeLMod ( Base ` M ) ) = ( R freeLMod ( Base ` M ) )
6 5 frlmsca
 |-  ( ( R e. U /\ ( Base ` M ) e. _V ) -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) )
7 2 4 6 sylancl
 |-  ( ph -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) )
8 scaid
 |-  Scalar = Slot ( Scalar ` ndx )
9 scandxnmulrndx
 |-  ( Scalar ` ndx ) =/= ( .r ` ndx )
10 eqid
 |-  ( Base ` M ) = ( Base ` M )
11 1 8 9 10 5 2 3 mnringnmulrd
 |-  ( ph -> ( Scalar ` ( R freeLMod ( Base ` M ) ) ) = ( Scalar ` F ) )
12 7 11 eqtrd
 |-  ( ph -> R = ( Scalar ` F ) )