| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringscad.1 |  |-  F = ( R MndRing M ) | 
						
							| 2 |  | mnringscad.2 |  |-  ( ph -> R e. U ) | 
						
							| 3 |  | mnringscad.3 |  |-  ( ph -> M e. W ) | 
						
							| 4 |  | fvex |  |-  ( Base ` M ) e. _V | 
						
							| 5 |  | eqid |  |-  ( R freeLMod ( Base ` M ) ) = ( R freeLMod ( Base ` M ) ) | 
						
							| 6 | 5 | frlmsca |  |-  ( ( R e. U /\ ( Base ` M ) e. _V ) -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) ) | 
						
							| 7 | 2 4 6 | sylancl |  |-  ( ph -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) ) | 
						
							| 8 |  | scaid |  |-  Scalar = Slot ( Scalar ` ndx ) | 
						
							| 9 |  | scandxnmulrndx |  |-  ( Scalar ` ndx ) =/= ( .r ` ndx ) | 
						
							| 10 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 11 | 1 8 9 10 5 2 3 | mnringnmulrd |  |-  ( ph -> ( Scalar ` ( R freeLMod ( Base ` M ) ) ) = ( Scalar ` F ) ) | 
						
							| 12 | 7 11 | eqtrd |  |-  ( ph -> R = ( Scalar ` F ) ) |