Metamath Proof Explorer


Theorem mnringscad

Description: The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringscad.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringscad.2 φ R U
mnringscad.3 φ M W
Assertion mnringscad φ R = Scalar F

Proof

Step Hyp Ref Expression
1 mnringscad.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringscad.2 φ R U
3 mnringscad.3 φ M W
4 fvex Base M V
5 eqid R freeLMod Base M = R freeLMod Base M
6 5 frlmsca R U Base M V R = Scalar R freeLMod Base M
7 2 4 6 sylancl φ R = Scalar R freeLMod Base M
8 scaid Scalar = Slot Scalar ndx
9 scandxnmulrndx Scalar ndx ndx
10 eqid Base M = Base M
11 1 8 9 10 5 2 3 mnringnmulrd φ Scalar R freeLMod Base M = Scalar F
12 7 11 eqtrd φ R = Scalar F