Metamath Proof Explorer


Theorem mnringscadOLD

Description: Obsolete version of mnringscad as of 1-Nov-2024. The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses mnringscad.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringscad.2 φRU
mnringscad.3 φMW
Assertion mnringscadOLD φR=ScalarF

Proof

Step Hyp Ref Expression
1 mnringscad.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringscad.2 φRU
3 mnringscad.3 φMW
4 fvex BaseMV
5 eqid RfreeLModBaseM=RfreeLModBaseM
6 5 frlmsca RUBaseMVR=ScalarRfreeLModBaseM
7 2 4 6 sylancl φR=ScalarRfreeLModBaseM
8 df-sca Scalar=Slot5
9 5nn 5
10 3re 3
11 3lt5 3<5
12 10 11 gtneii 53
13 mulrndx ndx=3
14 12 13 neeqtrri 5ndx
15 eqid BaseM=BaseM
16 1 8 9 14 15 5 2 3 mnringnmulrdOLD φScalarRfreeLModBaseM=ScalarF
17 7 16 eqtrd φR=ScalarF