Step |
Hyp |
Ref |
Expression |
1 |
|
mnringscad.1 |
|- F = ( R MndRing M ) |
2 |
|
mnringscad.2 |
|- ( ph -> R e. U ) |
3 |
|
mnringscad.3 |
|- ( ph -> M e. W ) |
4 |
|
fvex |
|- ( Base ` M ) e. _V |
5 |
|
eqid |
|- ( R freeLMod ( Base ` M ) ) = ( R freeLMod ( Base ` M ) ) |
6 |
5
|
frlmsca |
|- ( ( R e. U /\ ( Base ` M ) e. _V ) -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) ) |
7 |
2 4 6
|
sylancl |
|- ( ph -> R = ( Scalar ` ( R freeLMod ( Base ` M ) ) ) ) |
8 |
|
df-sca |
|- Scalar = Slot 5 |
9 |
|
5nn |
|- 5 e. NN |
10 |
|
3re |
|- 3 e. RR |
11 |
|
3lt5 |
|- 3 < 5 |
12 |
10 11
|
gtneii |
|- 5 =/= 3 |
13 |
|
mulrndx |
|- ( .r ` ndx ) = 3 |
14 |
12 13
|
neeqtrri |
|- 5 =/= ( .r ` ndx ) |
15 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
16 |
1 8 9 14 15 5 2 3
|
mnringnmulrdOLD |
|- ( ph -> ( Scalar ` ( R freeLMod ( Base ` M ) ) ) = ( Scalar ` F ) ) |
17 |
7 16
|
eqtrd |
|- ( ph -> R = ( Scalar ` F ) ) |