Description: The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnringvscad.1 | |- F = ( R MndRing M ) |
|
mnringvscad.2 | |- B = ( Base ` M ) |
||
mnringvscad.3 | |- V = ( R freeLMod B ) |
||
mnringvscad.4 | |- ( ph -> R e. U ) |
||
mnringvscad.5 | |- ( ph -> M e. W ) |
||
Assertion | mnringvscad | |- ( ph -> ( .s ` V ) = ( .s ` F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringvscad.1 | |- F = ( R MndRing M ) |
|
2 | mnringvscad.2 | |- B = ( Base ` M ) |
|
3 | mnringvscad.3 | |- V = ( R freeLMod B ) |
|
4 | mnringvscad.4 | |- ( ph -> R e. U ) |
|
5 | mnringvscad.5 | |- ( ph -> M e. W ) |
|
6 | vscaid | |- .s = Slot ( .s ` ndx ) |
|
7 | vscandxnmulrndx | |- ( .s ` ndx ) =/= ( .r ` ndx ) |
|
8 | 1 6 7 2 3 4 5 | mnringnmulrd | |- ( ph -> ( .s ` V ) = ( .s ` F ) ) |