Metamath Proof Explorer


Theorem mnringvscad

Description: The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringvscad.1
|- F = ( R MndRing M )
mnringvscad.2
|- B = ( Base ` M )
mnringvscad.3
|- V = ( R freeLMod B )
mnringvscad.4
|- ( ph -> R e. U )
mnringvscad.5
|- ( ph -> M e. W )
Assertion mnringvscad
|- ( ph -> ( .s ` V ) = ( .s ` F ) )

Proof

Step Hyp Ref Expression
1 mnringvscad.1
 |-  F = ( R MndRing M )
2 mnringvscad.2
 |-  B = ( Base ` M )
3 mnringvscad.3
 |-  V = ( R freeLMod B )
4 mnringvscad.4
 |-  ( ph -> R e. U )
5 mnringvscad.5
 |-  ( ph -> M e. W )
6 vscaid
 |-  .s = Slot ( .s ` ndx )
7 vscandxnmulrndx
 |-  ( .s ` ndx ) =/= ( .r ` ndx )
8 1 6 7 2 3 4 5 mnringnmulrd
 |-  ( ph -> ( .s ` V ) = ( .s ` F ) )