Description: The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mnringvscad.1 | |- F = ( R MndRing M ) |
|
| mnringvscad.2 | |- B = ( Base ` M ) |
||
| mnringvscad.3 | |- V = ( R freeLMod B ) |
||
| mnringvscad.4 | |- ( ph -> R e. U ) |
||
| mnringvscad.5 | |- ( ph -> M e. W ) |
||
| Assertion | mnringvscad | |- ( ph -> ( .s ` V ) = ( .s ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnringvscad.1 | |- F = ( R MndRing M ) |
|
| 2 | mnringvscad.2 | |- B = ( Base ` M ) |
|
| 3 | mnringvscad.3 | |- V = ( R freeLMod B ) |
|
| 4 | mnringvscad.4 | |- ( ph -> R e. U ) |
|
| 5 | mnringvscad.5 | |- ( ph -> M e. W ) |
|
| 6 | vscaid | |- .s = Slot ( .s ` ndx ) |
|
| 7 | vscandxnmulrndx | |- ( .s ` ndx ) =/= ( .r ` ndx ) |
|
| 8 | 1 6 7 2 3 4 5 | mnringnmulrd | |- ( ph -> ( .s ` V ) = ( .s ` F ) ) |