Description: The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mnringvscad.1 | |- F = ( R MndRing M ) | |
| mnringvscad.2 | |- B = ( Base ` M ) | ||
| mnringvscad.3 | |- V = ( R freeLMod B ) | ||
| mnringvscad.4 | |- ( ph -> R e. U ) | ||
| mnringvscad.5 | |- ( ph -> M e. W ) | ||
| Assertion | mnringvscad | |- ( ph -> ( .s ` V ) = ( .s ` F ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mnringvscad.1 | |- F = ( R MndRing M ) | |
| 2 | mnringvscad.2 | |- B = ( Base ` M ) | |
| 3 | mnringvscad.3 | |- V = ( R freeLMod B ) | |
| 4 | mnringvscad.4 | |- ( ph -> R e. U ) | |
| 5 | mnringvscad.5 | |- ( ph -> M e. W ) | |
| 6 | vscaid | |- .s = Slot ( .s ` ndx ) | |
| 7 | vscandxnmulrndx | |- ( .s ` ndx ) =/= ( .r ` ndx ) | |
| 8 | 1 6 7 2 3 4 5 | mnringnmulrd | |- ( ph -> ( .s ` V ) = ( .s ` F ) ) |