Metamath Proof Explorer


Theorem mnringvscad

Description: The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringvscad.1
|- F = ( R MndRing M )
mnringvscad.2
|- B = ( Base ` M )
mnringvscad.3
|- V = ( R freeLMod B )
mnringvscad.4
|- ( ph -> R e. U )
mnringvscad.5
|- ( ph -> M e. W )
Assertion mnringvscad
|- ( ph -> ( .s ` V ) = ( .s ` F ) )

Proof

Step Hyp Ref Expression
1 mnringvscad.1
 |-  F = ( R MndRing M )
2 mnringvscad.2
 |-  B = ( Base ` M )
3 mnringvscad.3
 |-  V = ( R freeLMod B )
4 mnringvscad.4
 |-  ( ph -> R e. U )
5 mnringvscad.5
 |-  ( ph -> M e. W )
6 df-vsca
 |-  .s = Slot 6
7 6nn
 |-  6 e. NN
8 3re
 |-  3 e. RR
9 3lt6
 |-  3 < 6
10 8 9 gtneii
 |-  6 =/= 3
11 mulrndx
 |-  ( .r ` ndx ) = 3
12 10 11 neeqtrri
 |-  6 =/= ( .r ` ndx )
13 1 6 7 12 2 3 4 5 mnringnmulrd
 |-  ( ph -> ( .s ` V ) = ( .s ` F ) )