| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringmulrvald.1 |  |-  F = ( R MndRing M ) | 
						
							| 2 |  | mnringmulrvald.2 |  |-  B = ( Base ` F ) | 
						
							| 3 |  | mnringmulrvald.3 |  |-  .xb = ( .r ` R ) | 
						
							| 4 |  | mnringmulrvald.4 |  |-  .0b = ( 0g ` R ) | 
						
							| 5 |  | mnringmulrvald.5 |  |-  A = ( Base ` M ) | 
						
							| 6 |  | mnringmulrvald.6 |  |-  .+ = ( +g ` M ) | 
						
							| 7 |  | mnringmulrvald.7 |  |-  .x. = ( .r ` F ) | 
						
							| 8 |  | mnringmulrvald.8 |  |-  ( ph -> R e. U ) | 
						
							| 9 |  | mnringmulrvald.9 |  |-  ( ph -> M e. W ) | 
						
							| 10 |  | mnringmulrvald.10 |  |-  ( ph -> X e. B ) | 
						
							| 11 |  | mnringmulrvald.11 |  |-  ( ph -> Y e. B ) | 
						
							| 12 | 1 2 3 4 5 6 8 9 | mnringmulrd |  |-  ( ph -> ( x e. B , y e. B |-> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) ) = ( .r ` F ) ) | 
						
							| 13 | 12 7 | eqtr4di |  |-  ( ph -> ( x e. B , y e. B |-> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) ) = .x. ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ph -> .x. = ( x e. B , y e. B |-> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) ) ) | 
						
							| 15 |  | fveq1 |  |-  ( x = X -> ( x ` a ) = ( X ` a ) ) | 
						
							| 16 |  | fveq1 |  |-  ( y = Y -> ( y ` b ) = ( Y ` b ) ) | 
						
							| 17 | 15 16 | oveqan12d |  |-  ( ( x = X /\ y = Y ) -> ( ( x ` a ) .xb ( y ` b ) ) = ( ( X ` a ) .xb ( Y ` b ) ) ) | 
						
							| 18 | 17 | ifeq1d |  |-  ( ( x = X /\ y = Y ) -> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) = if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) | 
						
							| 19 | 18 | mpteq2dv |  |-  ( ( x = X /\ y = Y ) -> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) = ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) | 
						
							| 20 | 19 | mpoeq3dv |  |-  ( ( x = X /\ y = Y ) -> ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) = ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ( x = X /\ y = Y ) -> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) = ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) = ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) ) | 
						
							| 23 |  | ovexd |  |-  ( ph -> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) e. _V ) | 
						
							| 24 | 14 22 10 11 23 | ovmpod |  |-  ( ph -> ( X .x. Y ) = ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) ) |