Step |
Hyp |
Ref |
Expression |
1 |
|
mnringmulrvald.1 |
|- F = ( R MndRing M ) |
2 |
|
mnringmulrvald.2 |
|- B = ( Base ` F ) |
3 |
|
mnringmulrvald.3 |
|- .xb = ( .r ` R ) |
4 |
|
mnringmulrvald.4 |
|- .0b = ( 0g ` R ) |
5 |
|
mnringmulrvald.5 |
|- A = ( Base ` M ) |
6 |
|
mnringmulrvald.6 |
|- .+ = ( +g ` M ) |
7 |
|
mnringmulrvald.7 |
|- .x. = ( .r ` F ) |
8 |
|
mnringmulrvald.8 |
|- ( ph -> R e. U ) |
9 |
|
mnringmulrvald.9 |
|- ( ph -> M e. W ) |
10 |
|
mnringmulrvald.10 |
|- ( ph -> X e. B ) |
11 |
|
mnringmulrvald.11 |
|- ( ph -> Y e. B ) |
12 |
1 2 3 4 5 6 8 9
|
mnringmulrd |
|- ( ph -> ( x e. B , y e. B |-> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) ) = ( .r ` F ) ) |
13 |
12 7
|
eqtr4di |
|- ( ph -> ( x e. B , y e. B |-> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) ) = .x. ) |
14 |
13
|
eqcomd |
|- ( ph -> .x. = ( x e. B , y e. B |-> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) ) ) |
15 |
|
fveq1 |
|- ( x = X -> ( x ` a ) = ( X ` a ) ) |
16 |
|
fveq1 |
|- ( y = Y -> ( y ` b ) = ( Y ` b ) ) |
17 |
15 16
|
oveqan12d |
|- ( ( x = X /\ y = Y ) -> ( ( x ` a ) .xb ( y ` b ) ) = ( ( X ` a ) .xb ( Y ` b ) ) ) |
18 |
17
|
ifeq1d |
|- ( ( x = X /\ y = Y ) -> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) = if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) |
19 |
18
|
mpteq2dv |
|- ( ( x = X /\ y = Y ) -> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) = ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) |
20 |
19
|
mpoeq3dv |
|- ( ( x = X /\ y = Y ) -> ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) = ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) |
21 |
20
|
oveq2d |
|- ( ( x = X /\ y = Y ) -> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) = ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) ) |
22 |
21
|
adantl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) = ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) ) |
23 |
|
ovexd |
|- ( ph -> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) e. _V ) |
24 |
14 22 10 11 23
|
ovmpod |
|- ( ph -> ( X .x. Y ) = ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) ) |