Metamath Proof Explorer


Theorem mnringmulrvald

Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringmulrvald.1
|- F = ( R MndRing M )
mnringmulrvald.2
|- B = ( Base ` F )
mnringmulrvald.3
|- .xb = ( .r ` R )
mnringmulrvald.4
|- .0b = ( 0g ` R )
mnringmulrvald.5
|- A = ( Base ` M )
mnringmulrvald.6
|- .+ = ( +g ` M )
mnringmulrvald.7
|- .x. = ( .r ` F )
mnringmulrvald.8
|- ( ph -> R e. U )
mnringmulrvald.9
|- ( ph -> M e. W )
mnringmulrvald.10
|- ( ph -> X e. B )
mnringmulrvald.11
|- ( ph -> Y e. B )
Assertion mnringmulrvald
|- ( ph -> ( X .x. Y ) = ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mnringmulrvald.1
 |-  F = ( R MndRing M )
2 mnringmulrvald.2
 |-  B = ( Base ` F )
3 mnringmulrvald.3
 |-  .xb = ( .r ` R )
4 mnringmulrvald.4
 |-  .0b = ( 0g ` R )
5 mnringmulrvald.5
 |-  A = ( Base ` M )
6 mnringmulrvald.6
 |-  .+ = ( +g ` M )
7 mnringmulrvald.7
 |-  .x. = ( .r ` F )
8 mnringmulrvald.8
 |-  ( ph -> R e. U )
9 mnringmulrvald.9
 |-  ( ph -> M e. W )
10 mnringmulrvald.10
 |-  ( ph -> X e. B )
11 mnringmulrvald.11
 |-  ( ph -> Y e. B )
12 1 2 3 4 5 6 8 9 mnringmulrd
 |-  ( ph -> ( x e. B , y e. B |-> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) ) = ( .r ` F ) )
13 12 7 eqtr4di
 |-  ( ph -> ( x e. B , y e. B |-> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) ) = .x. )
14 13 eqcomd
 |-  ( ph -> .x. = ( x e. B , y e. B |-> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) ) )
15 fveq1
 |-  ( x = X -> ( x ` a ) = ( X ` a ) )
16 fveq1
 |-  ( y = Y -> ( y ` b ) = ( Y ` b ) )
17 15 16 oveqan12d
 |-  ( ( x = X /\ y = Y ) -> ( ( x ` a ) .xb ( y ` b ) ) = ( ( X ` a ) .xb ( Y ` b ) ) )
18 17 ifeq1d
 |-  ( ( x = X /\ y = Y ) -> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) = if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) )
19 18 mpteq2dv
 |-  ( ( x = X /\ y = Y ) -> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) = ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) )
20 19 mpoeq3dv
 |-  ( ( x = X /\ y = Y ) -> ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) = ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) )
21 20 oveq2d
 |-  ( ( x = X /\ y = Y ) -> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) = ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) )
22 21 adantl
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .xb ( y ` b ) ) , .0b ) ) ) ) = ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) )
23 ovexd
 |-  ( ph -> ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) e. _V )
24 14 22 10 11 23 ovmpod
 |-  ( ph -> ( X .x. Y ) = ( F gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( X ` a ) .xb ( Y ` b ) ) , .0b ) ) ) ) )