Metamath Proof Explorer


Theorem mnringmulrvald

Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringmulrvald.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringmulrvald.2 B=BaseF
mnringmulrvald.3 ˙=R
mnringmulrvald.4 𝟎˙=0R
mnringmulrvald.5 A=BaseM
mnringmulrvald.6 +˙=+M
mnringmulrvald.7 ·˙=F
mnringmulrvald.8 φRU
mnringmulrvald.9 φMW
mnringmulrvald.10 φXB
mnringmulrvald.11 φYB
Assertion mnringmulrvald φX·˙Y=FaA,bAiAifi=a+˙bXa˙Yb𝟎˙

Proof

Step Hyp Ref Expression
1 mnringmulrvald.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringmulrvald.2 B=BaseF
3 mnringmulrvald.3 ˙=R
4 mnringmulrvald.4 𝟎˙=0R
5 mnringmulrvald.5 A=BaseM
6 mnringmulrvald.6 +˙=+M
7 mnringmulrvald.7 ·˙=F
8 mnringmulrvald.8 φRU
9 mnringmulrvald.9 φMW
10 mnringmulrvald.10 φXB
11 mnringmulrvald.11 φYB
12 1 2 3 4 5 6 8 9 mnringmulrd φxB,yBFaA,bAiAifi=a+˙bxa˙yb𝟎˙=F
13 12 7 eqtr4di φxB,yBFaA,bAiAifi=a+˙bxa˙yb𝟎˙=·˙
14 13 eqcomd φ·˙=xB,yBFaA,bAiAifi=a+˙bxa˙yb𝟎˙
15 fveq1 x=Xxa=Xa
16 fveq1 y=Yyb=Yb
17 15 16 oveqan12d x=Xy=Yxa˙yb=Xa˙Yb
18 17 ifeq1d x=Xy=Yifi=a+˙bxa˙yb𝟎˙=ifi=a+˙bXa˙Yb𝟎˙
19 18 mpteq2dv x=Xy=YiAifi=a+˙bxa˙yb𝟎˙=iAifi=a+˙bXa˙Yb𝟎˙
20 19 mpoeq3dv x=Xy=YaA,bAiAifi=a+˙bxa˙yb𝟎˙=aA,bAiAifi=a+˙bXa˙Yb𝟎˙
21 20 oveq2d x=Xy=YFaA,bAiAifi=a+˙bxa˙yb𝟎˙=FaA,bAiAifi=a+˙bXa˙Yb𝟎˙
22 21 adantl φx=Xy=YFaA,bAiAifi=a+˙bxa˙yb𝟎˙=FaA,bAiAifi=a+˙bXa˙Yb𝟎˙
23 ovexd φFaA,bAiAifi=a+˙bXa˙Yb𝟎˙V
24 14 22 10 11 23 ovmpod φX·˙Y=FaA,bAiAifi=a+˙bXa˙Yb𝟎˙