Metamath Proof Explorer


Theorem mnringmulrvald

Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringmulrvald.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringmulrvald.2 B = Base F
mnringmulrvald.3 ˙ = R
mnringmulrvald.4 𝟎 ˙ = 0 R
mnringmulrvald.5 A = Base M
mnringmulrvald.6 + ˙ = + M
mnringmulrvald.7 · ˙ = F
mnringmulrvald.8 φ R U
mnringmulrvald.9 φ M W
mnringmulrvald.10 φ X B
mnringmulrvald.11 φ Y B
Assertion mnringmulrvald φ X · ˙ Y = F a A , b A i A if i = a + ˙ b X a ˙ Y b 𝟎 ˙

Proof

Step Hyp Ref Expression
1 mnringmulrvald.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringmulrvald.2 B = Base F
3 mnringmulrvald.3 ˙ = R
4 mnringmulrvald.4 𝟎 ˙ = 0 R
5 mnringmulrvald.5 A = Base M
6 mnringmulrvald.6 + ˙ = + M
7 mnringmulrvald.7 · ˙ = F
8 mnringmulrvald.8 φ R U
9 mnringmulrvald.9 φ M W
10 mnringmulrvald.10 φ X B
11 mnringmulrvald.11 φ Y B
12 1 2 3 4 5 6 8 9 mnringmulrd φ x B , y B F a A , b A i A if i = a + ˙ b x a ˙ y b 𝟎 ˙ = F
13 12 7 eqtr4di φ x B , y B F a A , b A i A if i = a + ˙ b x a ˙ y b 𝟎 ˙ = · ˙
14 13 eqcomd φ · ˙ = x B , y B F a A , b A i A if i = a + ˙ b x a ˙ y b 𝟎 ˙
15 fveq1 x = X x a = X a
16 fveq1 y = Y y b = Y b
17 15 16 oveqan12d x = X y = Y x a ˙ y b = X a ˙ Y b
18 17 ifeq1d x = X y = Y if i = a + ˙ b x a ˙ y b 𝟎 ˙ = if i = a + ˙ b X a ˙ Y b 𝟎 ˙
19 18 mpteq2dv x = X y = Y i A if i = a + ˙ b x a ˙ y b 𝟎 ˙ = i A if i = a + ˙ b X a ˙ Y b 𝟎 ˙
20 19 mpoeq3dv x = X y = Y a A , b A i A if i = a + ˙ b x a ˙ y b 𝟎 ˙ = a A , b A i A if i = a + ˙ b X a ˙ Y b 𝟎 ˙
21 20 oveq2d x = X y = Y F a A , b A i A if i = a + ˙ b x a ˙ y b 𝟎 ˙ = F a A , b A i A if i = a + ˙ b X a ˙ Y b 𝟎 ˙
22 21 adantl φ x = X y = Y F a A , b A i A if i = a + ˙ b x a ˙ y b 𝟎 ˙ = F a A , b A i A if i = a + ˙ b X a ˙ Y b 𝟎 ˙
23 ovexd φ F a A , b A i A if i = a + ˙ b X a ˙ Y b 𝟎 ˙ V
24 14 22 10 11 23 ovmpod φ X · ˙ Y = F a A , b A i A if i = a + ˙ b X a ˙ Y b 𝟎 ˙