Step |
Hyp |
Ref |
Expression |
1 |
|
mnringmulrvald.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
2 |
|
mnringmulrvald.2 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
mnringmulrvald.3 |
⊢ ∙ = ( .r ‘ 𝑅 ) |
4 |
|
mnringmulrvald.4 |
⊢ 𝟎 = ( 0g ‘ 𝑅 ) |
5 |
|
mnringmulrvald.5 |
⊢ 𝐴 = ( Base ‘ 𝑀 ) |
6 |
|
mnringmulrvald.6 |
⊢ + = ( +g ‘ 𝑀 ) |
7 |
|
mnringmulrvald.7 |
⊢ · = ( .r ‘ 𝐹 ) |
8 |
|
mnringmulrvald.8 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
9 |
|
mnringmulrvald.9 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
10 |
|
mnringmulrvald.10 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
11 |
|
mnringmulrvald.11 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
12 |
1 2 3 4 5 6 8 9
|
mnringmulrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ∙ ( 𝑦 ‘ 𝑏 ) ) , 𝟎 ) ) ) ) ) = ( .r ‘ 𝐹 ) ) |
13 |
12 7
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ∙ ( 𝑦 ‘ 𝑏 ) ) , 𝟎 ) ) ) ) ) = · ) |
14 |
13
|
eqcomd |
⊢ ( 𝜑 → · = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ∙ ( 𝑦 ‘ 𝑏 ) ) , 𝟎 ) ) ) ) ) ) |
15 |
|
fveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑎 ) ) |
16 |
|
fveq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ‘ 𝑏 ) = ( 𝑌 ‘ 𝑏 ) ) |
17 |
15 16
|
oveqan12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 𝑥 ‘ 𝑎 ) ∙ ( 𝑦 ‘ 𝑏 ) ) = ( ( 𝑋 ‘ 𝑎 ) ∙ ( 𝑌 ‘ 𝑏 ) ) ) |
18 |
17
|
ifeq1d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ∙ ( 𝑦 ‘ 𝑏 ) ) , 𝟎 ) = if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ∙ ( 𝑌 ‘ 𝑏 ) ) , 𝟎 ) ) |
19 |
18
|
mpteq2dv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ∙ ( 𝑦 ‘ 𝑏 ) ) , 𝟎 ) ) = ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ∙ ( 𝑌 ‘ 𝑏 ) ) , 𝟎 ) ) ) |
20 |
19
|
mpoeq3dv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ∙ ( 𝑦 ‘ 𝑏 ) ) , 𝟎 ) ) ) = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ∙ ( 𝑌 ‘ 𝑏 ) ) , 𝟎 ) ) ) ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ∙ ( 𝑦 ‘ 𝑏 ) ) , 𝟎 ) ) ) ) = ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ∙ ( 𝑌 ‘ 𝑏 ) ) , 𝟎 ) ) ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥 ‘ 𝑎 ) ∙ ( 𝑦 ‘ 𝑏 ) ) , 𝟎 ) ) ) ) = ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ∙ ( 𝑌 ‘ 𝑏 ) ) , 𝟎 ) ) ) ) ) |
23 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ∙ ( 𝑌 ‘ 𝑏 ) ) , 𝟎 ) ) ) ) ∈ V ) |
24 |
14 22 10 11 23
|
ovmpod |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ∙ ( 𝑌 ‘ 𝑏 ) ) , 𝟎 ) ) ) ) ) |