Metamath Proof Explorer


Theorem mnringmulrvald

Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringmulrvald.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringmulrvald.2 𝐵 = ( Base ‘ 𝐹 )
mnringmulrvald.3 = ( .r𝑅 )
mnringmulrvald.4 𝟎 = ( 0g𝑅 )
mnringmulrvald.5 𝐴 = ( Base ‘ 𝑀 )
mnringmulrvald.6 + = ( +g𝑀 )
mnringmulrvald.7 · = ( .r𝐹 )
mnringmulrvald.8 ( 𝜑𝑅𝑈 )
mnringmulrvald.9 ( 𝜑𝑀𝑊 )
mnringmulrvald.10 ( 𝜑𝑋𝐵 )
mnringmulrvald.11 ( 𝜑𝑌𝐵 )
Assertion mnringmulrvald ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝐹 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋𝑎 ) ( 𝑌𝑏 ) ) , 𝟎 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mnringmulrvald.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnringmulrvald.2 𝐵 = ( Base ‘ 𝐹 )
3 mnringmulrvald.3 = ( .r𝑅 )
4 mnringmulrvald.4 𝟎 = ( 0g𝑅 )
5 mnringmulrvald.5 𝐴 = ( Base ‘ 𝑀 )
6 mnringmulrvald.6 + = ( +g𝑀 )
7 mnringmulrvald.7 · = ( .r𝐹 )
8 mnringmulrvald.8 ( 𝜑𝑅𝑈 )
9 mnringmulrvald.9 ( 𝜑𝑀𝑊 )
10 mnringmulrvald.10 ( 𝜑𝑋𝐵 )
11 mnringmulrvald.11 ( 𝜑𝑌𝐵 )
12 1 2 3 4 5 6 8 9 mnringmulrd ( 𝜑 → ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝐹 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥𝑎 ) ( 𝑦𝑏 ) ) , 𝟎 ) ) ) ) ) = ( .r𝐹 ) )
13 12 7 eqtr4di ( 𝜑 → ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝐹 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥𝑎 ) ( 𝑦𝑏 ) ) , 𝟎 ) ) ) ) ) = · )
14 13 eqcomd ( 𝜑· = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝐹 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥𝑎 ) ( 𝑦𝑏 ) ) , 𝟎 ) ) ) ) ) )
15 fveq1 ( 𝑥 = 𝑋 → ( 𝑥𝑎 ) = ( 𝑋𝑎 ) )
16 fveq1 ( 𝑦 = 𝑌 → ( 𝑦𝑏 ) = ( 𝑌𝑏 ) )
17 15 16 oveqan12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( 𝑥𝑎 ) ( 𝑦𝑏 ) ) = ( ( 𝑋𝑎 ) ( 𝑌𝑏 ) ) )
18 17 ifeq1d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥𝑎 ) ( 𝑦𝑏 ) ) , 𝟎 ) = if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋𝑎 ) ( 𝑌𝑏 ) ) , 𝟎 ) )
19 18 mpteq2dv ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥𝑎 ) ( 𝑦𝑏 ) ) , 𝟎 ) ) = ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋𝑎 ) ( 𝑌𝑏 ) ) , 𝟎 ) ) )
20 19 mpoeq3dv ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥𝑎 ) ( 𝑦𝑏 ) ) , 𝟎 ) ) ) = ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋𝑎 ) ( 𝑌𝑏 ) ) , 𝟎 ) ) ) )
21 20 oveq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝐹 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥𝑎 ) ( 𝑦𝑏 ) ) , 𝟎 ) ) ) ) = ( 𝐹 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋𝑎 ) ( 𝑌𝑏 ) ) , 𝟎 ) ) ) ) )
22 21 adantl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝐹 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑥𝑎 ) ( 𝑦𝑏 ) ) , 𝟎 ) ) ) ) = ( 𝐹 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋𝑎 ) ( 𝑌𝑏 ) ) , 𝟎 ) ) ) ) )
23 ovexd ( 𝜑 → ( 𝐹 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋𝑎 ) ( 𝑌𝑏 ) ) , 𝟎 ) ) ) ) ∈ V )
24 14 22 10 11 23 ovmpod ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝐹 Σg ( 𝑎𝐴 , 𝑏𝐴 ↦ ( 𝑖𝐴 ↦ if ( 𝑖 = ( 𝑎 + 𝑏 ) , ( ( 𝑋𝑎 ) ( 𝑌𝑏 ) ) , 𝟎 ) ) ) ) )