| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringmulrvald.1 | ⊢ 𝐹  =  ( 𝑅  MndRing  𝑀 ) | 
						
							| 2 |  | mnringmulrvald.2 | ⊢ 𝐵  =  ( Base ‘ 𝐹 ) | 
						
							| 3 |  | mnringmulrvald.3 | ⊢  ∙   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | mnringmulrvald.4 | ⊢  𝟎   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | mnringmulrvald.5 | ⊢ 𝐴  =  ( Base ‘ 𝑀 ) | 
						
							| 6 |  | mnringmulrvald.6 | ⊢  +   =  ( +g ‘ 𝑀 ) | 
						
							| 7 |  | mnringmulrvald.7 | ⊢  ·   =  ( .r ‘ 𝐹 ) | 
						
							| 8 |  | mnringmulrvald.8 | ⊢ ( 𝜑  →  𝑅  ∈  𝑈 ) | 
						
							| 9 |  | mnringmulrvald.9 | ⊢ ( 𝜑  →  𝑀  ∈  𝑊 ) | 
						
							| 10 |  | mnringmulrvald.10 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 11 |  | mnringmulrvald.11 | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 12 | 1 2 3 4 5 6 8 9 | mnringmulrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝐹  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ∙  ( 𝑦 ‘ 𝑏 ) ) ,   𝟎  ) ) ) ) )  =  ( .r ‘ 𝐹 ) ) | 
						
							| 13 | 12 7 | eqtr4di | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝐹  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ∙  ( 𝑦 ‘ 𝑏 ) ) ,   𝟎  ) ) ) ) )  =   ·  ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( 𝜑  →   ·   =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝐹  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ∙  ( 𝑦 ‘ 𝑏 ) ) ,   𝟎  ) ) ) ) ) ) | 
						
							| 15 |  | fveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥 ‘ 𝑎 )  =  ( 𝑋 ‘ 𝑎 ) ) | 
						
							| 16 |  | fveq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦 ‘ 𝑏 )  =  ( 𝑌 ‘ 𝑏 ) ) | 
						
							| 17 | 15 16 | oveqan12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( ( 𝑥 ‘ 𝑎 )  ∙  ( 𝑦 ‘ 𝑏 ) )  =  ( ( 𝑋 ‘ 𝑎 )  ∙  ( 𝑌 ‘ 𝑏 ) ) ) | 
						
							| 18 | 17 | ifeq1d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ∙  ( 𝑦 ‘ 𝑏 ) ) ,   𝟎  )  =  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑋 ‘ 𝑎 )  ∙  ( 𝑌 ‘ 𝑏 ) ) ,   𝟎  ) ) | 
						
							| 19 | 18 | mpteq2dv | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ∙  ( 𝑦 ‘ 𝑏 ) ) ,   𝟎  ) )  =  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑋 ‘ 𝑎 )  ∙  ( 𝑌 ‘ 𝑏 ) ) ,   𝟎  ) ) ) | 
						
							| 20 | 19 | mpoeq3dv | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ∙  ( 𝑦 ‘ 𝑏 ) ) ,   𝟎  ) ) )  =  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑋 ‘ 𝑎 )  ∙  ( 𝑌 ‘ 𝑏 ) ) ,   𝟎  ) ) ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( 𝐹  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ∙  ( 𝑦 ‘ 𝑏 ) ) ,   𝟎  ) ) ) )  =  ( 𝐹  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑋 ‘ 𝑎 )  ∙  ( 𝑌 ‘ 𝑏 ) ) ,   𝟎  ) ) ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝐹  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑥 ‘ 𝑎 )  ∙  ( 𝑦 ‘ 𝑏 ) ) ,   𝟎  ) ) ) )  =  ( 𝐹  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑋 ‘ 𝑎 )  ∙  ( 𝑌 ‘ 𝑏 ) ) ,   𝟎  ) ) ) ) ) | 
						
							| 23 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐹  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑋 ‘ 𝑎 )  ∙  ( 𝑌 ‘ 𝑏 ) ) ,   𝟎  ) ) ) )  ∈  V ) | 
						
							| 24 | 14 22 10 11 23 | ovmpod | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑌 )  =  ( 𝐹  Σg  ( 𝑎  ∈  𝐴 ,  𝑏  ∈  𝐴  ↦  ( 𝑖  ∈  𝐴  ↦  if ( 𝑖  =  ( 𝑎  +  𝑏 ) ,  ( ( 𝑋 ‘ 𝑎 )  ∙  ( 𝑌 ‘ 𝑏 ) ) ,   𝟎  ) ) ) ) ) |