Step |
Hyp |
Ref |
Expression |
1 |
|
mnringmulrcld.2 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
2 |
|
mnringmulrcld.3 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
mnringmulrcld.1 |
⊢ 𝐴 = ( Base ‘ 𝑀 ) |
4 |
|
mnringmulrcld.4 |
⊢ · = ( .r ‘ 𝐹 ) |
5 |
|
mnringmulrcld.5 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
mnringmulrcld.6 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
7 |
|
mnringmulrcld.7 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
mnringmulrcld.8 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
12 |
1 2 9 10 3 11 4 5 6 7 8
|
mnringmulrvald |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
14 |
1 5 6
|
mnringlmodd |
⊢ ( 𝜑 → 𝐹 ∈ LMod ) |
15 |
|
lmodcmn |
⊢ ( 𝐹 ∈ LMod → 𝐹 ∈ CMnd ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ CMnd ) |
17 |
3
|
fvexi |
⊢ 𝐴 ∈ V |
18 |
17 17
|
xpex |
⊢ ( 𝐴 × 𝐴 ) ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × 𝐴 ) ∈ V ) |
20 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → 𝑅 ∈ Ring ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
22 |
1 2 3 21 5 6 7
|
mnringbasefd |
⊢ ( 𝜑 → 𝑋 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → 𝑋 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
24 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
25 |
23 24
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑋 ‘ 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
26 |
1 2 3 21 5 6 8
|
mnringbasefd |
⊢ ( 𝜑 → 𝑌 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → 𝑌 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
28 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → 𝑏 ∈ 𝐴 ) |
29 |
27 28
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑌 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
30 |
21 9
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑎 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) ∈ ( Base ‘ 𝑅 ) ) |
31 |
20 25 29 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) ∈ ( Base ‘ 𝑅 ) ) |
32 |
21 10
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
33 |
20 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
34 |
31 33
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝐴 ) → if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
36 |
35
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
37 |
21
|
fvexi |
⊢ ( Base ‘ 𝑅 ) ∈ V |
38 |
37 17
|
elmap |
⊢ ( ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) ↔ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
39 |
36 38
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) ) |
40 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → 𝐴 ∈ V ) |
41 |
|
eqid |
⊢ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) |
42 |
40 33 41
|
sniffsupp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
43 |
39 42
|
jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) ∧ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) ) |
44 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → 𝑀 ∈ 𝑈 ) |
45 |
1 2 3 21 10 20 44
|
mnringelbased |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ 𝐵 ↔ ( ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) ∧ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) ) ) |
46 |
43 45
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ 𝐵 ) |
47 |
46
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ 𝐵 ) |
48 |
47
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ 𝐵 ) |
49 |
|
eqid |
⊢ ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
50 |
49
|
fmpo |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ 𝐵 ↔ ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) : ( 𝐴 × 𝐴 ) ⟶ 𝐵 ) |
51 |
48 50
|
sylib |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) : ( 𝐴 × 𝐴 ) ⟶ 𝐵 ) |
52 |
17 17
|
mpoex |
⊢ ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ∈ V |
53 |
52
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ∈ V ) |
54 |
51
|
ffnd |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) Fn ( 𝐴 × 𝐴 ) ) |
55 |
13
|
fvexi |
⊢ ( 0g ‘ 𝐹 ) ∈ V |
56 |
55
|
a1i |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) ∈ V ) |
57 |
1 2 10 5 6 7
|
mnringbasefsuppd |
⊢ ( 𝜑 → 𝑋 finSupp ( 0g ‘ 𝑅 ) ) |
58 |
57
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
59 |
1 2 10 5 6 8
|
mnringbasefsuppd |
⊢ ( 𝜑 → 𝑌 finSupp ( 0g ‘ 𝑅 ) ) |
60 |
59
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
61 |
|
xpfi |
⊢ ( ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ∧ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) → ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∈ Fin ) |
62 |
58 60 61
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∈ Fin ) |
63 |
|
elxpi |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐴 ) → ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) |
64 |
|
simpl |
⊢ ( ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑝 = 〈 𝑎 , 𝑏 〉 ) |
65 |
64
|
2eximi |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ∃ 𝑎 ∃ 𝑏 𝑝 = 〈 𝑎 , 𝑏 〉 ) |
66 |
63 65
|
syl |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐴 ) → ∃ 𝑎 ∃ 𝑏 𝑝 = 〈 𝑎 , 𝑏 〉 ) |
67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ) → ∃ 𝑎 ∃ 𝑏 𝑝 = 〈 𝑎 , 𝑏 〉 ) |
68 |
|
nfv |
⊢ Ⅎ 𝑎 ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ) |
69 |
|
nfv |
⊢ Ⅎ 𝑎 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) |
70 |
|
nfmpo1 |
⊢ Ⅎ 𝑎 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
71 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑝 |
72 |
70 71
|
nffv |
⊢ Ⅎ 𝑎 ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) |
73 |
|
nfcv |
⊢ Ⅎ 𝑎 ( 0g ‘ 𝐹 ) |
74 |
72 73
|
nfeq |
⊢ Ⅎ 𝑎 ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) |
75 |
69 74
|
nfor |
⊢ Ⅎ 𝑎 ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) ) |
76 |
|
nfv |
⊢ Ⅎ 𝑏 ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ) |
77 |
|
nfv |
⊢ Ⅎ 𝑏 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) |
78 |
|
nfmpo2 |
⊢ Ⅎ 𝑏 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
79 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑝 |
80 |
78 79
|
nffv |
⊢ Ⅎ 𝑏 ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) |
81 |
|
nfcv |
⊢ Ⅎ 𝑏 ( 0g ‘ 𝐹 ) |
82 |
80 81
|
nfeq |
⊢ Ⅎ 𝑏 ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) |
83 |
77 82
|
nfor |
⊢ Ⅎ 𝑏 ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) ) |
84 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → 𝑝 = 〈 𝑎 , 𝑏 〉 ) |
85 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → 𝑝 ∈ ( 𝐴 × 𝐴 ) ) |
86 |
84 85
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐴 ) ) |
87 |
|
opelxp |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐴 ) ↔ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) |
88 |
86 87
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) |
89 |
|
ianor |
⊢ ( ¬ ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ↔ ( ¬ 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∨ ¬ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) |
90 |
22
|
ffnd |
⊢ ( 𝜑 → 𝑋 Fn 𝐴 ) |
91 |
17
|
a1i |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
92 |
10
|
fvexi |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
93 |
92
|
a1i |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
94 |
|
elsuppfn |
⊢ ( ( 𝑋 Fn 𝐴 ∧ 𝐴 ∈ V ∧ ( 0g ‘ 𝑅 ) ∈ V ) → ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ↔ ( 𝑎 ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ 𝑅 ) ) ) ) |
95 |
90 91 93 94
|
syl3anc |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ↔ ( 𝑎 ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ 𝑅 ) ) ) ) |
96 |
95
|
biimprd |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) |
97 |
96
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑎 ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) |
98 |
24 97
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ 𝑅 ) → 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) |
99 |
98
|
necon1bd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ¬ 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ) ) |
100 |
26
|
ffnd |
⊢ ( 𝜑 → 𝑌 Fn 𝐴 ) |
101 |
|
elsuppfn |
⊢ ( ( 𝑌 Fn 𝐴 ∧ 𝐴 ∈ V ∧ ( 0g ‘ 𝑅 ) ∈ V ) → ( 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ↔ ( 𝑏 ∈ 𝐴 ∧ ( 𝑌 ‘ 𝑏 ) ≠ ( 0g ‘ 𝑅 ) ) ) ) |
102 |
100 91 93 101
|
syl3anc |
⊢ ( 𝜑 → ( 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ↔ ( 𝑏 ∈ 𝐴 ∧ ( 𝑌 ‘ 𝑏 ) ≠ ( 0g ‘ 𝑅 ) ) ) ) |
103 |
102
|
biimprd |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐴 ∧ ( 𝑌 ‘ 𝑏 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) |
104 |
103
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑏 ∈ 𝐴 ∧ ( 𝑌 ‘ 𝑏 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) |
105 |
28 104
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑌 ‘ 𝑏 ) ≠ ( 0g ‘ 𝑅 ) → 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) |
106 |
105
|
necon1bd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ¬ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) → ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
107 |
99 106
|
orim12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( ¬ 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∨ ¬ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) → ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ∨ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) ) |
108 |
107
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ( ¬ 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∨ ¬ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ∨ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
109 |
89 108
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ¬ ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ∨ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) |
110 |
|
oveq1 |
⊢ ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) ) |
111 |
21 9 10
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) = ( 0g ‘ 𝑅 ) ) |
112 |
20 29 111
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) = ( 0g ‘ 𝑅 ) ) |
113 |
110 112
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) = ( 0g ‘ 𝑅 ) ) |
114 |
|
oveq2 |
⊢ ( ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) = ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
115 |
21 9 10
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
116 |
20 25 115
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
117 |
114 116
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) = ( 0g ‘ 𝑅 ) ) |
118 |
113 117
|
jaodan |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ∨ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) = ( 0g ‘ 𝑅 ) ) |
119 |
118
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ∨ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) = ( 0g ‘ 𝑅 ) ) |
120 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ∨ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) ∧ ¬ 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
121 |
119 120
|
ifeqda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ∨ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) → if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
122 |
121
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ∨ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑖 ∈ 𝐴 ↦ ( 0g ‘ 𝑅 ) ) ) |
123 |
|
fconstmpt |
⊢ ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) = ( 𝑖 ∈ 𝐴 ↦ ( 0g ‘ 𝑅 ) ) |
124 |
1 10 3 5 6
|
mnring0g2d |
⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝐹 ) ) |
125 |
123 124
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐴 ↦ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝐹 ) ) |
126 |
125
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑖 ∈ 𝐴 ↦ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝐹 ) ) |
127 |
126
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ∨ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑖 ∈ 𝐴 ↦ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝐹 ) ) |
128 |
122 127
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑋 ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ∨ ( 𝑌 ‘ 𝑏 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝐹 ) ) |
129 |
109 128
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ¬ ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝐹 ) ) |
130 |
129
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ¬ ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝐹 ) ) ) |
131 |
130
|
orrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝐹 ) ) ) |
132 |
131
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝐹 ) ) ) |
133 |
132
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → ( ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝐹 ) ) ) |
134 |
|
eleq1 |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ↔ 〈 𝑎 , 𝑏 〉 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) ) |
135 |
|
opelxp |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ↔ ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) |
136 |
134 135
|
bitrdi |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ↔ ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) ) |
137 |
136
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ↔ ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) ) |
138 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → 𝑎 ∈ 𝐴 ) |
139 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → 𝑏 ∈ 𝐴 ) |
140 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
141 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → 𝑝 = 〈 𝑎 , 𝑏 〉 ) |
142 |
17
|
mptex |
⊢ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ V |
143 |
142
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ) |
144 |
140 141 143
|
fvmpopr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
145 |
138 139 144
|
mpd3an23 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
146 |
145
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → ( ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) ↔ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝐹 ) ) ) |
147 |
137 146
|
orbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → ( ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) ) ↔ ( ( 𝑎 ∈ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝐹 ) ) ) ) |
148 |
133 147
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) ) ) |
149 |
88 148
|
syld3an2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ∧ 𝑝 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) ) ) |
150 |
149
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ) → ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) ) ) ) |
151 |
76 83 150
|
exlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ) → ( ∃ 𝑏 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) ) ) ) |
152 |
68 75 151
|
exlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ) → ( ∃ 𝑎 ∃ 𝑏 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) ) ) ) |
153 |
67 152
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐴 × 𝐴 ) ) → ( 𝑝 ∈ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) × ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ∨ ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑝 ) = ( 0g ‘ 𝐹 ) ) ) |
154 |
53 54 56 62 153
|
finnzfsuppd |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) finSupp ( 0g ‘ 𝐹 ) ) |
155 |
2 13 16 19 51 154
|
gsumcl |
⊢ ( 𝜑 → ( 𝐹 Σg ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐴 ↦ ( 𝑖 ∈ 𝐴 ↦ if ( 𝑖 = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) , ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑏 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ 𝐵 ) |
156 |
12 155
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |