Step |
Hyp |
Ref |
Expression |
1 |
|
finnzfsuppd.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
finnzfsuppd.2 |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
3 |
|
finnzfsuppd.3 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
4 |
|
finnzfsuppd.4 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
5 |
|
finnzfsuppd.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∈ 𝐴 ∨ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
6 |
1 2
|
fndmexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
7 |
|
elsuppfn |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐷 ∈ V ∧ 𝑍 ∈ 𝑈 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) ) |
8 |
2 6 3 7
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) ) |
9 |
8
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → ( 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) |
10 |
9
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → 𝑥 ∈ 𝐷 ) |
11 |
10 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → ( 𝑥 ∈ 𝐴 ∨ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
12 |
9
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) |
13 |
12
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → ¬ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
14 |
11 13
|
olcnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → 𝑥 ∈ 𝐴 ) |
15 |
14
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) → 𝑥 ∈ 𝐴 ) ) |
16 |
15
|
ssrdv |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝐴 ) |
17 |
4 16
|
ssfid |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
18 |
|
fnfun |
⊢ ( 𝐹 Fn 𝐷 → Fun 𝐹 ) |
19 |
2 18
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
20 |
|
funisfsupp |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
21 |
19 1 3 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
22 |
17 21
|
mpbird |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |