Step |
Hyp |
Ref |
Expression |
1 |
|
finnzfsuppd.1 |
|- ( ph -> F e. V ) |
2 |
|
finnzfsuppd.2 |
|- ( ph -> F Fn D ) |
3 |
|
finnzfsuppd.3 |
|- ( ph -> Z e. U ) |
4 |
|
finnzfsuppd.4 |
|- ( ph -> A e. Fin ) |
5 |
|
finnzfsuppd.5 |
|- ( ( ph /\ x e. D ) -> ( x e. A \/ ( F ` x ) = Z ) ) |
6 |
1 2
|
fndmexd |
|- ( ph -> D e. _V ) |
7 |
|
elsuppfn |
|- ( ( F Fn D /\ D e. _V /\ Z e. U ) -> ( x e. ( F supp Z ) <-> ( x e. D /\ ( F ` x ) =/= Z ) ) ) |
8 |
2 6 3 7
|
syl3anc |
|- ( ph -> ( x e. ( F supp Z ) <-> ( x e. D /\ ( F ` x ) =/= Z ) ) ) |
9 |
8
|
biimpa |
|- ( ( ph /\ x e. ( F supp Z ) ) -> ( x e. D /\ ( F ` x ) =/= Z ) ) |
10 |
9
|
simpld |
|- ( ( ph /\ x e. ( F supp Z ) ) -> x e. D ) |
11 |
10 5
|
syldan |
|- ( ( ph /\ x e. ( F supp Z ) ) -> ( x e. A \/ ( F ` x ) = Z ) ) |
12 |
9
|
simprd |
|- ( ( ph /\ x e. ( F supp Z ) ) -> ( F ` x ) =/= Z ) |
13 |
12
|
neneqd |
|- ( ( ph /\ x e. ( F supp Z ) ) -> -. ( F ` x ) = Z ) |
14 |
11 13
|
olcnd |
|- ( ( ph /\ x e. ( F supp Z ) ) -> x e. A ) |
15 |
14
|
ex |
|- ( ph -> ( x e. ( F supp Z ) -> x e. A ) ) |
16 |
15
|
ssrdv |
|- ( ph -> ( F supp Z ) C_ A ) |
17 |
4 16
|
ssfid |
|- ( ph -> ( F supp Z ) e. Fin ) |
18 |
|
fnfun |
|- ( F Fn D -> Fun F ) |
19 |
2 18
|
syl |
|- ( ph -> Fun F ) |
20 |
|
funisfsupp |
|- ( ( Fun F /\ F e. V /\ Z e. U ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
21 |
19 1 3 20
|
syl3anc |
|- ( ph -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
22 |
17 21
|
mpbird |
|- ( ph -> F finSupp Z ) |