Metamath Proof Explorer


Theorem rr-phpd

Description: Equivalent of php without negation. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses rr-phpd.1
|- ( ph -> A e. _om )
rr-phpd.2
|- ( ph -> B C_ A )
rr-phpd.3
|- ( ph -> A ~~ B )
Assertion rr-phpd
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 rr-phpd.1
 |-  ( ph -> A e. _om )
2 rr-phpd.2
 |-  ( ph -> B C_ A )
3 rr-phpd.3
 |-  ( ph -> A ~~ B )
4 2 adantr
 |-  ( ( ph /\ -. A = B ) -> B C_ A )
5 simpr
 |-  ( ( ph /\ -. A = B ) -> -. A = B )
6 5 neqcomd
 |-  ( ( ph /\ -. A = B ) -> -. B = A )
7 dfpss2
 |-  ( B C. A <-> ( B C_ A /\ -. B = A ) )
8 4 6 7 sylanbrc
 |-  ( ( ph /\ -. A = B ) -> B C. A )
9 php
 |-  ( ( A e. _om /\ B C. A ) -> -. A ~~ B )
10 1 8 9 syl2an2r
 |-  ( ( ph /\ -. A = B ) -> -. A ~~ B )
11 10 ex
 |-  ( ph -> ( -. A = B -> -. A ~~ B ) )
12 3 11 mt4d
 |-  ( ph -> A = B )