| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rr-phpd.1 |
|- ( ph -> A e. _om ) |
| 2 |
|
rr-phpd.2 |
|- ( ph -> B C_ A ) |
| 3 |
|
rr-phpd.3 |
|- ( ph -> A ~~ B ) |
| 4 |
2
|
adantr |
|- ( ( ph /\ -. A = B ) -> B C_ A ) |
| 5 |
|
simpr |
|- ( ( ph /\ -. A = B ) -> -. A = B ) |
| 6 |
5
|
neqcomd |
|- ( ( ph /\ -. A = B ) -> -. B = A ) |
| 7 |
|
dfpss2 |
|- ( B C. A <-> ( B C_ A /\ -. B = A ) ) |
| 8 |
4 6 7
|
sylanbrc |
|- ( ( ph /\ -. A = B ) -> B C. A ) |
| 9 |
|
php |
|- ( ( A e. _om /\ B C. A ) -> -. A ~~ B ) |
| 10 |
1 8 9
|
syl2an2r |
|- ( ( ph /\ -. A = B ) -> -. A ~~ B ) |
| 11 |
10
|
ex |
|- ( ph -> ( -. A = B -> -. A ~~ B ) ) |
| 12 |
3 11
|
mt4d |
|- ( ph -> A = B ) |