Metamath Proof Explorer


Theorem rr-phpd

Description: Equivalent of php without negation. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses rr-phpd.1 φ A ω
rr-phpd.2 φ B A
rr-phpd.3 φ A B
Assertion rr-phpd φ A = B

Proof

Step Hyp Ref Expression
1 rr-phpd.1 φ A ω
2 rr-phpd.2 φ B A
3 rr-phpd.3 φ A B
4 2 adantr φ ¬ A = B B A
5 simpr φ ¬ A = B ¬ A = B
6 5 neqcomd φ ¬ A = B ¬ B = A
7 dfpss2 B A B A ¬ B = A
8 4 6 7 sylanbrc φ ¬ A = B B A
9 php A ω B A ¬ A B
10 1 8 9 syl2an2r φ ¬ A = B ¬ A B
11 10 ex φ ¬ A = B ¬ A B
12 3 11 mt4d φ A = B