Step |
Hyp |
Ref |
Expression |
1 |
|
mnringelbased.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
2 |
|
mnringelbased.2 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
mnringelbased.3 |
⊢ 𝐴 = ( Base ‘ 𝑀 ) |
4 |
|
mnringelbased.4 |
⊢ 𝐶 = ( Base ‘ 𝑅 ) |
5 |
|
mnringelbased.5 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
mnringelbased.6 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
7 |
|
mnringelbased.7 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
8 |
|
eqid |
⊢ ( 𝑅 freeLMod 𝐴 ) = ( 𝑅 freeLMod 𝐴 ) |
9 |
1 2 3 8 6 7
|
mnringbaserd |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ) ) |
11 |
3
|
fvexi |
⊢ 𝐴 ∈ V |
12 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) |
13 |
8 4 5 12
|
frlmelbas |
⊢ ( ( 𝑅 ∈ 𝑈 ∧ 𝐴 ∈ V ) → ( 𝑋 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↔ ( 𝑋 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝑋 finSupp 0 ) ) ) |
14 |
6 11 13
|
sylancl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↔ ( 𝑋 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝑋 finSupp 0 ) ) ) |
15 |
10 14
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝑋 finSupp 0 ) ) ) |