Metamath Proof Explorer


Theorem mnringelbased

Description: Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringelbased.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringelbased.2 𝐵 = ( Base ‘ 𝐹 )
mnringelbased.3 𝐴 = ( Base ‘ 𝑀 )
mnringelbased.4 𝐶 = ( Base ‘ 𝑅 )
mnringelbased.5 0 = ( 0g𝑅 )
mnringelbased.6 ( 𝜑𝑅𝑈 )
mnringelbased.7 ( 𝜑𝑀𝑊 )
Assertion mnringelbased ( 𝜑 → ( 𝑋𝐵 ↔ ( 𝑋 ∈ ( 𝐶m 𝐴 ) ∧ 𝑋 finSupp 0 ) ) )

Proof

Step Hyp Ref Expression
1 mnringelbased.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnringelbased.2 𝐵 = ( Base ‘ 𝐹 )
3 mnringelbased.3 𝐴 = ( Base ‘ 𝑀 )
4 mnringelbased.4 𝐶 = ( Base ‘ 𝑅 )
5 mnringelbased.5 0 = ( 0g𝑅 )
6 mnringelbased.6 ( 𝜑𝑅𝑈 )
7 mnringelbased.7 ( 𝜑𝑀𝑊 )
8 eqid ( 𝑅 freeLMod 𝐴 ) = ( 𝑅 freeLMod 𝐴 )
9 1 2 3 8 6 7 mnringbaserd ( 𝜑𝐵 = ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) )
10 9 eleq2d ( 𝜑 → ( 𝑋𝐵𝑋 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ) )
11 3 fvexi 𝐴 ∈ V
12 eqid ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐴 ) )
13 8 4 5 12 frlmelbas ( ( 𝑅𝑈𝐴 ∈ V ) → ( 𝑋 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↔ ( 𝑋 ∈ ( 𝐶m 𝐴 ) ∧ 𝑋 finSupp 0 ) ) )
14 6 11 13 sylancl ( 𝜑 → ( 𝑋 ∈ ( Base ‘ ( 𝑅 freeLMod 𝐴 ) ) ↔ ( 𝑋 ∈ ( 𝐶m 𝐴 ) ∧ 𝑋 finSupp 0 ) ) )
15 10 14 bitrd ( 𝜑 → ( 𝑋𝐵 ↔ ( 𝑋 ∈ ( 𝐶m 𝐴 ) ∧ 𝑋 finSupp 0 ) ) )