Metamath Proof Explorer


Theorem mnringelbased

Description: Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringelbased.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringelbased.2 B = Base F
mnringelbased.3 A = Base M
mnringelbased.4 C = Base R
mnringelbased.5 0 ˙ = 0 R
mnringelbased.6 φ R U
mnringelbased.7 φ M W
Assertion mnringelbased φ X B X C A finSupp 0 ˙ X

Proof

Step Hyp Ref Expression
1 mnringelbased.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringelbased.2 B = Base F
3 mnringelbased.3 A = Base M
4 mnringelbased.4 C = Base R
5 mnringelbased.5 0 ˙ = 0 R
6 mnringelbased.6 φ R U
7 mnringelbased.7 φ M W
8 eqid R freeLMod A = R freeLMod A
9 1 2 3 8 6 7 mnringbaserd φ B = Base R freeLMod A
10 9 eleq2d φ X B X Base R freeLMod A
11 3 fvexi A V
12 eqid Base R freeLMod A = Base R freeLMod A
13 8 4 5 12 frlmelbas R U A V X Base R freeLMod A X C A finSupp 0 ˙ X
14 6 11 13 sylancl φ X Base R freeLMod A X C A finSupp 0 ˙ X
15 10 14 bitrd φ X B X C A finSupp 0 ˙ X