Metamath Proof Explorer


Theorem mnringbaserd

Description: The base set of a monoid ring. Converse of mnringbased . (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbaserd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringbaserd.2 B = Base F
mnringbaserd.3 A = Base M
mnringbaserd.4 V = R freeLMod A
mnringbaserd.5 φ R U
mnringbaserd.6 φ M W
Assertion mnringbaserd φ B = Base V

Proof

Step Hyp Ref Expression
1 mnringbaserd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringbaserd.2 B = Base F
3 mnringbaserd.3 A = Base M
4 mnringbaserd.4 V = R freeLMod A
5 mnringbaserd.5 φ R U
6 mnringbaserd.6 φ M W
7 eqid Base V = Base V
8 1 3 4 7 5 6 mnringbased φ Base V = Base F
9 2 8 eqtr4id φ B = Base V