Description: The base set of a monoid ring. Converse of mnringbased . (Contributed by Rohan Ridenour, 14-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnringbaserd.1 | |- F = ( R MndRing M ) |
|
mnringbaserd.2 | |- B = ( Base ` F ) |
||
mnringbaserd.3 | |- A = ( Base ` M ) |
||
mnringbaserd.4 | |- V = ( R freeLMod A ) |
||
mnringbaserd.5 | |- ( ph -> R e. U ) |
||
mnringbaserd.6 | |- ( ph -> M e. W ) |
||
Assertion | mnringbaserd | |- ( ph -> B = ( Base ` V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringbaserd.1 | |- F = ( R MndRing M ) |
|
2 | mnringbaserd.2 | |- B = ( Base ` F ) |
|
3 | mnringbaserd.3 | |- A = ( Base ` M ) |
|
4 | mnringbaserd.4 | |- V = ( R freeLMod A ) |
|
5 | mnringbaserd.5 | |- ( ph -> R e. U ) |
|
6 | mnringbaserd.6 | |- ( ph -> M e. W ) |
|
7 | eqid | |- ( Base ` V ) = ( Base ` V ) |
|
8 | 1 3 4 7 5 6 | mnringbased | |- ( ph -> ( Base ` V ) = ( Base ` F ) ) |
9 | 2 8 | eqtr4id | |- ( ph -> B = ( Base ` V ) ) |