Description: The base set of a monoid ring. Converse of mnringbased . (Contributed by Rohan Ridenour, 14-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mnringbaserd.1 | |- F = ( R MndRing M ) |
|
| mnringbaserd.2 | |- B = ( Base ` F ) |
||
| mnringbaserd.3 | |- A = ( Base ` M ) |
||
| mnringbaserd.4 | |- V = ( R freeLMod A ) |
||
| mnringbaserd.5 | |- ( ph -> R e. U ) |
||
| mnringbaserd.6 | |- ( ph -> M e. W ) |
||
| Assertion | mnringbaserd | |- ( ph -> B = ( Base ` V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnringbaserd.1 | |- F = ( R MndRing M ) |
|
| 2 | mnringbaserd.2 | |- B = ( Base ` F ) |
|
| 3 | mnringbaserd.3 | |- A = ( Base ` M ) |
|
| 4 | mnringbaserd.4 | |- V = ( R freeLMod A ) |
|
| 5 | mnringbaserd.5 | |- ( ph -> R e. U ) |
|
| 6 | mnringbaserd.6 | |- ( ph -> M e. W ) |
|
| 7 | eqid | |- ( Base ` V ) = ( Base ` V ) |
|
| 8 | 1 3 4 7 5 6 | mnringbased | |- ( ph -> ( Base ` V ) = ( Base ` F ) ) |
| 9 | 2 8 | eqtr4id | |- ( ph -> B = ( Base ` V ) ) |