Metamath Proof Explorer


Theorem mnringbaserd

Description: The base set of a monoid ring. Converse of mnringbased . (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbaserd.1
|- F = ( R MndRing M )
mnringbaserd.2
|- B = ( Base ` F )
mnringbaserd.3
|- A = ( Base ` M )
mnringbaserd.4
|- V = ( R freeLMod A )
mnringbaserd.5
|- ( ph -> R e. U )
mnringbaserd.6
|- ( ph -> M e. W )
Assertion mnringbaserd
|- ( ph -> B = ( Base ` V ) )

Proof

Step Hyp Ref Expression
1 mnringbaserd.1
 |-  F = ( R MndRing M )
2 mnringbaserd.2
 |-  B = ( Base ` F )
3 mnringbaserd.3
 |-  A = ( Base ` M )
4 mnringbaserd.4
 |-  V = ( R freeLMod A )
5 mnringbaserd.5
 |-  ( ph -> R e. U )
6 mnringbaserd.6
 |-  ( ph -> M e. W )
7 eqid
 |-  ( Base ` V ) = ( Base ` V )
8 1 3 4 7 5 6 mnringbased
 |-  ( ph -> ( Base ` V ) = ( Base ` F ) )
9 2 8 eqtr4id
 |-  ( ph -> B = ( Base ` V ) )