Step |
Hyp |
Ref |
Expression |
1 |
|
mnringelbased.1 |
|- F = ( R MndRing M ) |
2 |
|
mnringelbased.2 |
|- B = ( Base ` F ) |
3 |
|
mnringelbased.3 |
|- A = ( Base ` M ) |
4 |
|
mnringelbased.4 |
|- C = ( Base ` R ) |
5 |
|
mnringelbased.5 |
|- .0. = ( 0g ` R ) |
6 |
|
mnringelbased.6 |
|- ( ph -> R e. U ) |
7 |
|
mnringelbased.7 |
|- ( ph -> M e. W ) |
8 |
|
eqid |
|- ( R freeLMod A ) = ( R freeLMod A ) |
9 |
1 2 3 8 6 7
|
mnringbaserd |
|- ( ph -> B = ( Base ` ( R freeLMod A ) ) ) |
10 |
9
|
eleq2d |
|- ( ph -> ( X e. B <-> X e. ( Base ` ( R freeLMod A ) ) ) ) |
11 |
3
|
fvexi |
|- A e. _V |
12 |
|
eqid |
|- ( Base ` ( R freeLMod A ) ) = ( Base ` ( R freeLMod A ) ) |
13 |
8 4 5 12
|
frlmelbas |
|- ( ( R e. U /\ A e. _V ) -> ( X e. ( Base ` ( R freeLMod A ) ) <-> ( X e. ( C ^m A ) /\ X finSupp .0. ) ) ) |
14 |
6 11 13
|
sylancl |
|- ( ph -> ( X e. ( Base ` ( R freeLMod A ) ) <-> ( X e. ( C ^m A ) /\ X finSupp .0. ) ) ) |
15 |
10 14
|
bitrd |
|- ( ph -> ( X e. B <-> ( X e. ( C ^m A ) /\ X finSupp .0. ) ) ) |