Metamath Proof Explorer


Theorem mnringelbased

Description: Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringelbased.1
|- F = ( R MndRing M )
mnringelbased.2
|- B = ( Base ` F )
mnringelbased.3
|- A = ( Base ` M )
mnringelbased.4
|- C = ( Base ` R )
mnringelbased.5
|- .0. = ( 0g ` R )
mnringelbased.6
|- ( ph -> R e. U )
mnringelbased.7
|- ( ph -> M e. W )
Assertion mnringelbased
|- ( ph -> ( X e. B <-> ( X e. ( C ^m A ) /\ X finSupp .0. ) ) )

Proof

Step Hyp Ref Expression
1 mnringelbased.1
 |-  F = ( R MndRing M )
2 mnringelbased.2
 |-  B = ( Base ` F )
3 mnringelbased.3
 |-  A = ( Base ` M )
4 mnringelbased.4
 |-  C = ( Base ` R )
5 mnringelbased.5
 |-  .0. = ( 0g ` R )
6 mnringelbased.6
 |-  ( ph -> R e. U )
7 mnringelbased.7
 |-  ( ph -> M e. W )
8 eqid
 |-  ( R freeLMod A ) = ( R freeLMod A )
9 1 2 3 8 6 7 mnringbaserd
 |-  ( ph -> B = ( Base ` ( R freeLMod A ) ) )
10 9 eleq2d
 |-  ( ph -> ( X e. B <-> X e. ( Base ` ( R freeLMod A ) ) ) )
11 3 fvexi
 |-  A e. _V
12 eqid
 |-  ( Base ` ( R freeLMod A ) ) = ( Base ` ( R freeLMod A ) )
13 8 4 5 12 frlmelbas
 |-  ( ( R e. U /\ A e. _V ) -> ( X e. ( Base ` ( R freeLMod A ) ) <-> ( X e. ( C ^m A ) /\ X finSupp .0. ) ) )
14 6 11 13 sylancl
 |-  ( ph -> ( X e. ( Base ` ( R freeLMod A ) ) <-> ( X e. ( C ^m A ) /\ X finSupp .0. ) ) )
15 10 14 bitrd
 |-  ( ph -> ( X e. B <-> ( X e. ( C ^m A ) /\ X finSupp .0. ) ) )