Description: Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnringbasefd.1 | |- F = ( R MndRing M ) |
|
mnringbasefd.2 | |- B = ( Base ` F ) |
||
mnringbasefd.3 | |- A = ( Base ` M ) |
||
mnringbasefd.4 | |- C = ( Base ` R ) |
||
mnringbasefd.5 | |- ( ph -> R e. U ) |
||
mnringbasefd.6 | |- ( ph -> M e. W ) |
||
mnringbasefd.7 | |- ( ph -> X e. B ) |
||
Assertion | mnringbasefd | |- ( ph -> X : A --> C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringbasefd.1 | |- F = ( R MndRing M ) |
|
2 | mnringbasefd.2 | |- B = ( Base ` F ) |
|
3 | mnringbasefd.3 | |- A = ( Base ` M ) |
|
4 | mnringbasefd.4 | |- C = ( Base ` R ) |
|
5 | mnringbasefd.5 | |- ( ph -> R e. U ) |
|
6 | mnringbasefd.6 | |- ( ph -> M e. W ) |
|
7 | mnringbasefd.7 | |- ( ph -> X e. B ) |
|
8 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
9 | 1 2 3 4 8 5 6 | mnringelbased | |- ( ph -> ( X e. B <-> ( X e. ( C ^m A ) /\ X finSupp ( 0g ` R ) ) ) ) |
10 | 7 9 | mpbid | |- ( ph -> ( X e. ( C ^m A ) /\ X finSupp ( 0g ` R ) ) ) |
11 | 10 | simpld | |- ( ph -> X e. ( C ^m A ) ) |
12 | elmapi | |- ( X e. ( C ^m A ) -> X : A --> C ) |
|
13 | 11 12 | syl | |- ( ph -> X : A --> C ) |