Metamath Proof Explorer


Theorem mnringbasefd

Description: Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbasefd.1
|- F = ( R MndRing M )
mnringbasefd.2
|- B = ( Base ` F )
mnringbasefd.3
|- A = ( Base ` M )
mnringbasefd.4
|- C = ( Base ` R )
mnringbasefd.5
|- ( ph -> R e. U )
mnringbasefd.6
|- ( ph -> M e. W )
mnringbasefd.7
|- ( ph -> X e. B )
Assertion mnringbasefd
|- ( ph -> X : A --> C )

Proof

Step Hyp Ref Expression
1 mnringbasefd.1
 |-  F = ( R MndRing M )
2 mnringbasefd.2
 |-  B = ( Base ` F )
3 mnringbasefd.3
 |-  A = ( Base ` M )
4 mnringbasefd.4
 |-  C = ( Base ` R )
5 mnringbasefd.5
 |-  ( ph -> R e. U )
6 mnringbasefd.6
 |-  ( ph -> M e. W )
7 mnringbasefd.7
 |-  ( ph -> X e. B )
8 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
9 1 2 3 4 8 5 6 mnringelbased
 |-  ( ph -> ( X e. B <-> ( X e. ( C ^m A ) /\ X finSupp ( 0g ` R ) ) ) )
10 7 9 mpbid
 |-  ( ph -> ( X e. ( C ^m A ) /\ X finSupp ( 0g ` R ) ) )
11 10 simpld
 |-  ( ph -> X e. ( C ^m A ) )
12 elmapi
 |-  ( X e. ( C ^m A ) -> X : A --> C )
13 11 12 syl
 |-  ( ph -> X : A --> C )