| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnringbasefd.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
| 2 |
|
mnringbasefd.2 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 3 |
|
mnringbasefd.3 |
⊢ 𝐴 = ( Base ‘ 𝑀 ) |
| 4 |
|
mnringbasefd.4 |
⊢ 𝐶 = ( Base ‘ 𝑅 ) |
| 5 |
|
mnringbasefd.5 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
| 6 |
|
mnringbasefd.6 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
| 7 |
|
mnringbasefd.7 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 9 |
1 2 3 4 8 5 6
|
mnringelbased |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝑋 finSupp ( 0g ‘ 𝑅 ) ) ) ) |
| 10 |
7 9
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝑋 finSupp ( 0g ‘ 𝑅 ) ) ) |
| 11 |
10
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 ↑m 𝐴 ) ) |
| 12 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐶 ↑m 𝐴 ) → 𝑋 : 𝐴 ⟶ 𝐶 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝑋 : 𝐴 ⟶ 𝐶 ) |