Metamath Proof Explorer


Theorem mnringbasefd

Description: Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbasefd.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringbasefd.2 𝐵 = ( Base ‘ 𝐹 )
mnringbasefd.3 𝐴 = ( Base ‘ 𝑀 )
mnringbasefd.4 𝐶 = ( Base ‘ 𝑅 )
mnringbasefd.5 ( 𝜑𝑅𝑈 )
mnringbasefd.6 ( 𝜑𝑀𝑊 )
mnringbasefd.7 ( 𝜑𝑋𝐵 )
Assertion mnringbasefd ( 𝜑𝑋 : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 mnringbasefd.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnringbasefd.2 𝐵 = ( Base ‘ 𝐹 )
3 mnringbasefd.3 𝐴 = ( Base ‘ 𝑀 )
4 mnringbasefd.4 𝐶 = ( Base ‘ 𝑅 )
5 mnringbasefd.5 ( 𝜑𝑅𝑈 )
6 mnringbasefd.6 ( 𝜑𝑀𝑊 )
7 mnringbasefd.7 ( 𝜑𝑋𝐵 )
8 eqid ( 0g𝑅 ) = ( 0g𝑅 )
9 1 2 3 4 8 5 6 mnringelbased ( 𝜑 → ( 𝑋𝐵 ↔ ( 𝑋 ∈ ( 𝐶m 𝐴 ) ∧ 𝑋 finSupp ( 0g𝑅 ) ) ) )
10 7 9 mpbid ( 𝜑 → ( 𝑋 ∈ ( 𝐶m 𝐴 ) ∧ 𝑋 finSupp ( 0g𝑅 ) ) )
11 10 simpld ( 𝜑𝑋 ∈ ( 𝐶m 𝐴 ) )
12 elmapi ( 𝑋 ∈ ( 𝐶m 𝐴 ) → 𝑋 : 𝐴𝐶 )
13 11 12 syl ( 𝜑𝑋 : 𝐴𝐶 )