Step |
Hyp |
Ref |
Expression |
1 |
|
mnringbasefsuppd.1 |
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 ) |
2 |
|
mnringbasefsuppd.2 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
mnringbasefsuppd.3 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mnringbasefsuppd.4 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
5 |
|
mnringbasefsuppd.5 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
6 |
|
mnringbasefsuppd.6 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
1 2 7 8 3 4 5
|
mnringelbased |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( Base ‘ 𝑀 ) ) ∧ 𝑋 finSupp 0 ) ) ) |
10 |
6 9
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( Base ‘ 𝑀 ) ) ∧ 𝑋 finSupp 0 ) ) |
11 |
10
|
simprd |
⊢ ( 𝜑 → 𝑋 finSupp 0 ) |