Metamath Proof Explorer


Theorem mnringbasefsuppd

Description: Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbasefsuppd.1 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringbasefsuppd.2 𝐵 = ( Base ‘ 𝐹 )
mnringbasefsuppd.3 0 = ( 0g𝑅 )
mnringbasefsuppd.4 ( 𝜑𝑅𝑈 )
mnringbasefsuppd.5 ( 𝜑𝑀𝑊 )
mnringbasefsuppd.6 ( 𝜑𝑋𝐵 )
Assertion mnringbasefsuppd ( 𝜑𝑋 finSupp 0 )

Proof

Step Hyp Ref Expression
1 mnringbasefsuppd.1 𝐹 = ( 𝑅 MndRing 𝑀 )
2 mnringbasefsuppd.2 𝐵 = ( Base ‘ 𝐹 )
3 mnringbasefsuppd.3 0 = ( 0g𝑅 )
4 mnringbasefsuppd.4 ( 𝜑𝑅𝑈 )
5 mnringbasefsuppd.5 ( 𝜑𝑀𝑊 )
6 mnringbasefsuppd.6 ( 𝜑𝑋𝐵 )
7 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
8 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
9 1 2 7 8 3 4 5 mnringelbased ( 𝜑 → ( 𝑋𝐵 ↔ ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( Base ‘ 𝑀 ) ) ∧ 𝑋 finSupp 0 ) ) )
10 6 9 mpbid ( 𝜑 → ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( Base ‘ 𝑀 ) ) ∧ 𝑋 finSupp 0 ) )
11 10 simprd ( 𝜑𝑋 finSupp 0 )