Metamath Proof Explorer


Theorem mnringbasefsuppd

Description: Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbasefsuppd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringbasefsuppd.2 B = Base F
mnringbasefsuppd.3 0 ˙ = 0 R
mnringbasefsuppd.4 φ R U
mnringbasefsuppd.5 φ M W
mnringbasefsuppd.6 φ X B
Assertion mnringbasefsuppd φ finSupp 0 ˙ X

Proof

Step Hyp Ref Expression
1 mnringbasefsuppd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringbasefsuppd.2 B = Base F
3 mnringbasefsuppd.3 0 ˙ = 0 R
4 mnringbasefsuppd.4 φ R U
5 mnringbasefsuppd.5 φ M W
6 mnringbasefsuppd.6 φ X B
7 eqid Base M = Base M
8 eqid Base R = Base R
9 1 2 7 8 3 4 5 mnringelbased φ X B X Base R Base M finSupp 0 ˙ X
10 6 9 mpbid φ X Base R Base M finSupp 0 ˙ X
11 10 simprd φ finSupp 0 ˙ X