Metamath Proof Explorer


Theorem mnringbasefsuppd

Description: Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbasefsuppd.1
|- F = ( R MndRing M )
mnringbasefsuppd.2
|- B = ( Base ` F )
mnringbasefsuppd.3
|- .0. = ( 0g ` R )
mnringbasefsuppd.4
|- ( ph -> R e. U )
mnringbasefsuppd.5
|- ( ph -> M e. W )
mnringbasefsuppd.6
|- ( ph -> X e. B )
Assertion mnringbasefsuppd
|- ( ph -> X finSupp .0. )

Proof

Step Hyp Ref Expression
1 mnringbasefsuppd.1
 |-  F = ( R MndRing M )
2 mnringbasefsuppd.2
 |-  B = ( Base ` F )
3 mnringbasefsuppd.3
 |-  .0. = ( 0g ` R )
4 mnringbasefsuppd.4
 |-  ( ph -> R e. U )
5 mnringbasefsuppd.5
 |-  ( ph -> M e. W )
6 mnringbasefsuppd.6
 |-  ( ph -> X e. B )
7 eqid
 |-  ( Base ` M ) = ( Base ` M )
8 eqid
 |-  ( Base ` R ) = ( Base ` R )
9 1 2 7 8 3 4 5 mnringelbased
 |-  ( ph -> ( X e. B <-> ( X e. ( ( Base ` R ) ^m ( Base ` M ) ) /\ X finSupp .0. ) ) )
10 6 9 mpbid
 |-  ( ph -> ( X e. ( ( Base ` R ) ^m ( Base ` M ) ) /\ X finSupp .0. ) )
11 10 simprd
 |-  ( ph -> X finSupp .0. )