Description: Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnringbasefsuppd.1 | |- F = ( R MndRing M ) |
|
mnringbasefsuppd.2 | |- B = ( Base ` F ) |
||
mnringbasefsuppd.3 | |- .0. = ( 0g ` R ) |
||
mnringbasefsuppd.4 | |- ( ph -> R e. U ) |
||
mnringbasefsuppd.5 | |- ( ph -> M e. W ) |
||
mnringbasefsuppd.6 | |- ( ph -> X e. B ) |
||
Assertion | mnringbasefsuppd | |- ( ph -> X finSupp .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringbasefsuppd.1 | |- F = ( R MndRing M ) |
|
2 | mnringbasefsuppd.2 | |- B = ( Base ` F ) |
|
3 | mnringbasefsuppd.3 | |- .0. = ( 0g ` R ) |
|
4 | mnringbasefsuppd.4 | |- ( ph -> R e. U ) |
|
5 | mnringbasefsuppd.5 | |- ( ph -> M e. W ) |
|
6 | mnringbasefsuppd.6 | |- ( ph -> X e. B ) |
|
7 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
9 | 1 2 7 8 3 4 5 | mnringelbased | |- ( ph -> ( X e. B <-> ( X e. ( ( Base ` R ) ^m ( Base ` M ) ) /\ X finSupp .0. ) ) ) |
10 | 6 9 | mpbid | |- ( ph -> ( X e. ( ( Base ` R ) ^m ( Base ` M ) ) /\ X finSupp .0. ) ) |
11 | 10 | simprd | |- ( ph -> X finSupp .0. ) |