Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Monoid rings
mnringbasefd
Next ⟩
mnringbasefsuppd
Metamath Proof Explorer
Ascii
Unicode
Theorem
mnringbasefd
Description:
Elements of a monoid ring are functions.
(Contributed by
Rohan Ridenour
, 14-May-2024)
Ref
Expression
Hypotheses
mnringbasefd.1
⊢
F
=
R
MndRing
M
mnringbasefd.2
⊢
B
=
Base
F
mnringbasefd.3
⊢
A
=
Base
M
mnringbasefd.4
⊢
C
=
Base
R
mnringbasefd.5
⊢
φ
→
R
∈
U
mnringbasefd.6
⊢
φ
→
M
∈
W
mnringbasefd.7
⊢
φ
→
X
∈
B
Assertion
mnringbasefd
⊢
φ
→
X
:
A
⟶
C
Proof
Step
Hyp
Ref
Expression
1
mnringbasefd.1
⊢
F
=
R
MndRing
M
2
mnringbasefd.2
⊢
B
=
Base
F
3
mnringbasefd.3
⊢
A
=
Base
M
4
mnringbasefd.4
⊢
C
=
Base
R
5
mnringbasefd.5
⊢
φ
→
R
∈
U
6
mnringbasefd.6
⊢
φ
→
M
∈
W
7
mnringbasefd.7
⊢
φ
→
X
∈
B
8
eqid
⊢
0
R
=
0
R
9
1
2
3
4
8
5
6
mnringelbased
⊢
φ
→
X
∈
B
↔
X
∈
C
A
∧
finSupp
0
R
⁡
X
10
7
9
mpbid
⊢
φ
→
X
∈
C
A
∧
finSupp
0
R
⁡
X
11
10
simpld
⊢
φ
→
X
∈
C
A
12
elmapi
⊢
X
∈
C
A
→
X
:
A
⟶
C
13
11
12
syl
⊢
φ
→
X
:
A
⟶
C