Metamath Proof Explorer


Theorem mnringlmodd

Description: Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringlmodd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringlmodd.2 φ R Ring
mnringlmodd.3 φ M U
Assertion mnringlmodd φ F LMod

Proof

Step Hyp Ref Expression
1 mnringlmodd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringlmodd.2 φ R Ring
3 mnringlmodd.3 φ M U
4 fvexd φ Base M V
5 eqid R freeLMod Base M = R freeLMod Base M
6 5 frlmlmod R Ring Base M V R freeLMod Base M LMod
7 2 4 6 syl2anc φ R freeLMod Base M LMod
8 eqidd φ Base R freeLMod Base M = Base R freeLMod Base M
9 eqid Base M = Base M
10 eqid Base R freeLMod Base M = Base R freeLMod Base M
11 1 9 5 10 2 3 mnringbased φ Base R freeLMod Base M = Base F
12 1 9 5 2 3 mnringaddgd φ + R freeLMod Base M = + F
13 12 oveqdr φ x Base R freeLMod Base M y Base R freeLMod Base M x + R freeLMod Base M y = x + F y
14 5 frlmsca R Ring Base M V R = Scalar R freeLMod Base M
15 2 4 14 syl2anc φ R = Scalar R freeLMod Base M
16 1 2 3 mnringscad φ R = Scalar F
17 eqid Base R = Base R
18 1 9 5 2 3 mnringvscad φ R freeLMod Base M = F
19 18 oveqdr φ x Base R y Base R freeLMod Base M x R freeLMod Base M y = x F y
20 8 11 13 15 16 17 19 lmodpropd φ R freeLMod Base M LMod F LMod
21 7 20 mpbid φ F LMod