Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Monoid rings
mnringaddgdOLD
Metamath Proof Explorer
Description: Obsolete version of mnringaddgd as of 1-Nov-2024. The additive
operation of a monoid ring. (Contributed by Rohan Ridenour , 14-May-2024) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
mnringaddgd.1
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 )
mnringaddgd.2
⊢ 𝐴 = ( Base ‘ 𝑀 )
mnringaddgd.3
⊢ 𝑉 = ( 𝑅 freeLMod 𝐴 )
mnringaddgd.4
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 )
mnringaddgd.5
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 )
Assertion
mnringaddgdOLD
⊢ ( 𝜑 → ( +g ‘ 𝑉 ) = ( +g ‘ 𝐹 ) )
Proof
Step
Hyp
Ref
Expression
1
mnringaddgd.1
⊢ 𝐹 = ( 𝑅 MndRing 𝑀 )
2
mnringaddgd.2
⊢ 𝐴 = ( Base ‘ 𝑀 )
3
mnringaddgd.3
⊢ 𝑉 = ( 𝑅 freeLMod 𝐴 )
4
mnringaddgd.4
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 )
5
mnringaddgd.5
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 )
6
df-plusg
⊢ +g = Slot 2
7
2nn
⊢ 2 ∈ ℕ
8
2re
⊢ 2 ∈ ℝ
9
2lt3
⊢ 2 < 3
10
8 9
ltneii
⊢ 2 ≠ 3
11
mulrndx
⊢ ( .r ‘ ndx ) = 3
12
10 11
neeqtrri
⊢ 2 ≠ ( .r ‘ ndx )
13
1 6 7 12 2 3 4 5
mnringnmulrdOLD
⊢ ( 𝜑 → ( +g ‘ 𝑉 ) = ( +g ‘ 𝐹 ) )