Metamath Proof Explorer


Theorem mnringbaserd

Description: The base set of a monoid ring. Converse of mnringbased . (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbaserd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringbaserd.2 B=BaseF
mnringbaserd.3 A=BaseM
mnringbaserd.4 V=RfreeLModA
mnringbaserd.5 φRU
mnringbaserd.6 φMW
Assertion mnringbaserd φB=BaseV

Proof

Step Hyp Ref Expression
1 mnringbaserd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringbaserd.2 B=BaseF
3 mnringbaserd.3 A=BaseM
4 mnringbaserd.4 V=RfreeLModA
5 mnringbaserd.5 φRU
6 mnringbaserd.6 φMW
7 eqid BaseV=BaseV
8 1 3 4 7 5 6 mnringbased φBaseV=BaseF
9 2 8 eqtr4id φB=BaseV