Metamath Proof Explorer


Theorem mo4f

Description: At-most-one quantifier expressed using implicit substitution. Note that the disjoint variable condition on y , ph can be replaced by the nonfreeness hypothesis |- F/ y ph with essentially the same proof. (Contributed by NM, 10-Apr-2004) Remove dependency on ax-13 . (Revised by Wolf Lammen, 19-Jan-2023)

Ref Expression
Hypotheses mo4f.1 xψ
mo4f.2 x=yφψ
Assertion mo4f *xφxyφψx=y

Proof

Step Hyp Ref Expression
1 mo4f.1 xψ
2 mo4f.2 x=yφψ
3 nfv yφ
4 3 mo3 *xφxyφyxφx=y
5 1 2 sbiev yxφψ
6 5 anbi2i φyxφφψ
7 6 imbi1i φyxφx=yφψx=y
8 7 2albii xyφyxφx=yxyφψx=y
9 4 8 bitri *xφxyφψx=y