Metamath Proof Explorer


Theorem mobidv

Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022)

Ref Expression
Hypothesis mobidv.1 φψχ
Assertion mobidv φ*xψ*xχ

Proof

Step Hyp Ref Expression
1 mobidv.1 φψχ
2 1 alrimiv φxψχ
3 mobi xψχ*xψ*xχ
4 2 3 syl φ*xψ*xχ