Metamath Proof Explorer


Theorem modlteq

Description: Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021)

Ref Expression
Assertion modlteq I0..^NJ0..^NImodN=JmodNI=J

Proof

Step Hyp Ref Expression
1 zmodidfzoimp I0..^NImodN=I
2 zmodidfzoimp J0..^NJmodN=J
3 1 2 eqeqan12d I0..^NJ0..^NImodN=JmodNI=J