Metamath Proof Explorer


Theorem mopick

Description: "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997) (Proof shortened by Wolf Lammen, 17-Sep-2019)

Ref Expression
Assertion mopick *xφxφψφψ

Proof

Step Hyp Ref Expression
1 df-mo *xφyxφx=y
2 sp xφx=yφx=y
3 pm3.45 φx=yφψx=yψ
4 3 aleximi xφx=yxφψxx=yψ
5 sbalex xx=yψxx=yψ
6 sp xx=yψx=yψ
7 5 6 sylbi xx=yψx=yψ
8 4 7 syl6 xφx=yxφψx=yψ
9 2 8 syl5d xφx=yxφψφψ
10 9 exlimiv yxφx=yxφψφψ
11 1 10 sylbi *xφxφψφψ
12 11 imp *xφxφψφψ