Metamath Proof Explorer


Theorem mplsubg

Description: The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015) (Proof shortened by AV, 16-Jul-2019)

Ref Expression
Hypotheses mplsubg.s S=ImPwSerR
mplsubg.p P=ImPolyR
mplsubg.u U=BaseP
mplsubg.i φIW
mplsubg.r φRGrp
Assertion mplsubg φUSubGrpS

Proof

Step Hyp Ref Expression
1 mplsubg.s S=ImPwSerR
2 mplsubg.p P=ImPolyR
3 mplsubg.u U=BaseP
4 mplsubg.i φIW
5 mplsubg.r φRGrp
6 eqid BaseS=BaseS
7 eqid 0R=0R
8 eqid f0I|f-1Fin=f0I|f-1Fin
9 0fin Fin
10 9 a1i φFin
11 unfi xFinyFinxyFin
12 11 adantl φxFinyFinxyFin
13 ssfi xFinyxyFin
14 13 adantl φxFinyxyFin
15 1 2 3 4 mplsubglem2 φU=gBaseS|gsupp0RFin
16 1 6 7 8 4 10 12 14 15 5 mplsubglem φUSubGrpS