Description: Lemma for mplsubg and mpllss . (Contributed by AV, 16-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mplsubg.s | |
|
mplsubg.p | |
||
mplsubg.u | |
||
mplsubg.i | |
||
Assertion | mplsubglem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplsubg.s | |
|
2 | mplsubg.p | |
|
3 | mplsubg.u | |
|
4 | mplsubg.i | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 2 1 5 6 3 | mplbas | |
8 | 1 5 | psrelbasfun | |
9 | 8 | adantl | |
10 | simpr | |
|
11 | fvexd | |
|
12 | funisfsupp | |
|
13 | 9 10 11 12 | syl3anc | |
14 | 13 | rabbidva | |
15 | 7 14 | eqtrid | |