Metamath Proof Explorer


Theorem mplsubglem2

Description: Lemma for mplsubg and mpllss . (Contributed by AV, 16-Jul-2019)

Ref Expression
Hypotheses mplsubg.s S=ImPwSerR
mplsubg.p P=ImPolyR
mplsubg.u U=BaseP
mplsubg.i φIW
Assertion mplsubglem2 φU=gBaseS|gsupp0RFin

Proof

Step Hyp Ref Expression
1 mplsubg.s S=ImPwSerR
2 mplsubg.p P=ImPolyR
3 mplsubg.u U=BaseP
4 mplsubg.i φIW
5 eqid BaseS=BaseS
6 eqid 0R=0R
7 2 1 5 6 3 mplbas U=gBaseS|finSupp0Rg
8 1 5 psrelbasfun gBaseSFung
9 8 adantl φgBaseSFung
10 simpr φgBaseSgBaseS
11 fvexd φgBaseS0RV
12 funisfsupp FunggBaseS0RVfinSupp0Rggsupp0RFin
13 9 10 11 12 syl3anc φgBaseSfinSupp0Rggsupp0RFin
14 13 rabbidva φgBaseS|finSupp0Rg=gBaseS|gsupp0RFin
15 7 14 eqtrid φU=gBaseS|gsupp0RFin