Metamath Proof Explorer


Theorem mpo0

Description: A mapping operation with empty domain. In this version of mpo0v , the class of the second operator may depend on the first operator. (Contributed by Stefan O'Rear, 29-Jan-2015) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion mpo0 x,yBC=

Proof

Step Hyp Ref Expression
1 df-mpo x,yBC=xyz|xyBz=C
2 df-oprab xyz|xyBz=C=w|xyzw=xyzxyBz=C
3 noel ¬x
4 simprll w=xyzxyBz=Cx
5 3 4 mto ¬w=xyzxyBz=C
6 5 nex ¬zw=xyzxyBz=C
7 6 nex ¬yzw=xyzxyBz=C
8 7 nex ¬xyzw=xyzxyBz=C
9 8 abf w|xyzw=xyzxyBz=C=
10 1 2 9 3eqtri x,yBC=