Metamath Proof Explorer


Theorem mpocti

Description: An operation is countable if both its domains are countable. (Contributed by Thierry Arnoux, 17-Sep-2017)

Ref Expression
Hypothesis mpocti.1 x A y B C V
Assertion mpocti A ω B ω x A , y B C ω

Proof

Step Hyp Ref Expression
1 mpocti.1 x A y B C V
2 eqid x A , y B C = x A , y B C
3 2 fnmpo x A y B C V x A , y B C Fn A × B
4 1 3 ax-mp x A , y B C Fn A × B
5 xpct A ω B ω A × B ω
6 fnct x A , y B C Fn A × B A × B ω x A , y B C ω
7 4 5 6 sylancr A ω B ω x A , y B C ω