Metamath Proof Explorer


Theorem mpocurryvald

Description: The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019)

Ref Expression
Hypotheses mpocurryd.f F=xX,yYC
mpocurryd.c φxXyYCV
mpocurryd.n φY
mpocurryvald.y φYW
mpocurryvald.a φAX
Assertion mpocurryvald φcurryFA=yYA/xC

Proof

Step Hyp Ref Expression
1 mpocurryd.f F=xX,yYC
2 mpocurryd.c φxXyYCV
3 mpocurryd.n φY
4 mpocurryvald.y φYW
5 mpocurryvald.a φAX
6 1 2 3 mpocurryd φcurryF=xXyYC
7 nfcv _ayYC
8 nfcv _xY
9 nfcsb1v _xa/xC
10 8 9 nfmpt _xyYa/xC
11 csbeq1a x=aC=a/xC
12 11 mpteq2dv x=ayYC=yYa/xC
13 7 10 12 cbvmpt xXyYC=aXyYa/xC
14 6 13 eqtrdi φcurryF=aXyYa/xC
15 csbeq1 a=Aa/xC=A/xC
16 15 adantl φa=Aa/xC=A/xC
17 16 mpteq2dv φa=AyYa/xC=yYA/xC
18 4 mptexd φyYA/xCV
19 14 17 5 18 fvmptd φcurryFA=yYA/xC