Metamath Proof Explorer


Theorem mpoexxg

Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypothesis mpoexg.1 F=xA,yBC
Assertion mpoexxg ARxABSFV

Proof

Step Hyp Ref Expression
1 mpoexg.1 F=xA,yBC
2 1 mpofun FunF
3 1 dmmpossx domFxAx×B
4 vsnex xV
5 xpexg xVBSx×BV
6 4 5 mpan BSx×BV
7 6 ralimi xABSxAx×BV
8 iunexg ARxAx×BVxAx×BV
9 7 8 sylan2 ARxABSxAx×BV
10 ssexg domFxAx×BxAx×BVdomFV
11 3 9 10 sylancr ARxABSdomFV
12 funex FunFdomFVFV
13 2 11 12 sylancr ARxABSFV