Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
mpov
Next ⟩
mpomptx
Metamath Proof Explorer
Ascii
Unicode
Theorem
mpov
Description:
Operation with universal domain in maps-to notation.
(Contributed by
NM
, 16-Aug-2013)
Ref
Expression
Assertion
mpov
⊢
x
∈
V
,
y
∈
V
⟼
C
=
x
y
z
|
z
=
C
Proof
Step
Hyp
Ref
Expression
1
df-mpo
⊢
x
∈
V
,
y
∈
V
⟼
C
=
x
y
z
|
x
∈
V
∧
y
∈
V
∧
z
=
C
2
vex
⊢
x
∈
V
3
vex
⊢
y
∈
V
4
2
3
pm3.2i
⊢
x
∈
V
∧
y
∈
V
5
4
biantrur
⊢
z
=
C
↔
x
∈
V
∧
y
∈
V
∧
z
=
C
6
5
oprabbii
⊢
x
y
z
|
z
=
C
=
x
y
z
|
x
∈
V
∧
y
∈
V
∧
z
=
C
7
1
6
eqtr4i
⊢
x
∈
V
,
y
∈
V
⟼
C
=
x
y
z
|
z
=
C