Metamath Proof Explorer


Theorem mpteq12df

Description: An equality inference for the maps-to notation. Compare mpteq12dv . (Contributed by Scott Fenton, 8-Aug-2013) (Revised by Mario Carneiro, 11-Dec-2016) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq12df.1 xφ
mpteq12df.2 φA=C
mpteq12df.3 φB=D
Assertion mpteq12df φxAB=xCD

Proof

Step Hyp Ref Expression
1 mpteq12df.1 xφ
2 mpteq12df.2 φA=C
3 mpteq12df.3 φB=D
4 3 adantr φxAB=D
5 1 2 4 mpteq12da φxAB=xCD