Metamath Proof Explorer


Theorem mpteq12df

Description: An equality inference for the maps-to notation. Compare mpteq12dv . (Contributed by Scott Fenton, 8-Aug-2013) (Revised by Mario Carneiro, 11-Dec-2016) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq12df.1 x φ
mpteq12df.2 φ A = C
mpteq12df.3 φ B = D
Assertion mpteq12df φ x A B = x C D

Proof

Step Hyp Ref Expression
1 mpteq12df.1 x φ
2 mpteq12df.2 φ A = C
3 mpteq12df.3 φ B = D
4 3 adantr φ x A B = D
5 1 2 4 mpteq12da φ x A B = x C D