Metamath Proof Explorer


Theorem mpteq1i

Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024)

Ref Expression
Hypothesis mpteq1i.1 A = B
Assertion mpteq1i x A C = x B C

Proof

Step Hyp Ref Expression
1 mpteq1i.1 A = B
2 1 a1i A = B
3 eqidd C = C
4 2 3 mpteq12dv x A C = x B C
5 4 mptru x A C = x B C