Metamath Proof Explorer


Theorem mpteq2iaOLD

Description: Obsolete version of mpteq2ia as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mpteq2ia.1 xAB=C
Assertion mpteq2iaOLD xAB=xAC

Proof

Step Hyp Ref Expression
1 mpteq2ia.1 xAB=C
2 eqid A=A
3 2 ax-gen xA=A
4 1 rgen xAB=C
5 mpteq12f xA=AxAB=CxAB=xAC
6 3 4 5 mp2an xAB=xAC