Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Functions in maps-to notation
mpteq2iaOLD
Metamath Proof Explorer
Description: Obsolete version of mpteq2ia as of 11-Nov-2024. (Contributed by Mario
Carneiro , 16-Dec-2013) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypothesis
mpteq2ia.1
⊢ x ∈ A → B = C
Assertion
mpteq2iaOLD
⊢ x ∈ A ⟼ B = x ∈ A ⟼ C
Proof
Step
Hyp
Ref
Expression
1
mpteq2ia.1
⊢ x ∈ A → B = C
2
eqid
⊢ A = A
3
2
ax-gen
⊢ ∀ x A = A
4
1
rgen
⊢ ∀ x ∈ A B = C
5
mpteq12f
⊢ ∀ x A = A ∧ ∀ x ∈ A B = C → x ∈ A ⟼ B = x ∈ A ⟼ C
6
3 4 5
mp2an
⊢ x ∈ A ⟼ B = x ∈ A ⟼ C