Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
mptfi
Next ⟩
abrexfi
Metamath Proof Explorer
Ascii
Unicode
Theorem
mptfi
Description:
A finite mapping set is finite.
(Contributed by
Mario Carneiro
, 31-Aug-2015)
Ref
Expression
Assertion
mptfi
⊢
A
∈
Fin
→
x
∈
A
⟼
B
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
funmpt
⊢
Fun
⁡
x
∈
A
⟼
B
2
funfn
⊢
Fun
⁡
x
∈
A
⟼
B
↔
x
∈
A
⟼
B
Fn
dom
⁡
x
∈
A
⟼
B
3
1
2
mpbi
⊢
x
∈
A
⟼
B
Fn
dom
⁡
x
∈
A
⟼
B
4
eqid
⊢
x
∈
A
⟼
B
=
x
∈
A
⟼
B
5
4
dmmptss
⊢
dom
⁡
x
∈
A
⟼
B
⊆
A
6
ssfi
⊢
A
∈
Fin
∧
dom
⁡
x
∈
A
⟼
B
⊆
A
→
dom
⁡
x
∈
A
⟼
B
∈
Fin
7
5
6
mpan2
⊢
A
∈
Fin
→
dom
⁡
x
∈
A
⟼
B
∈
Fin
8
fnfi
⊢
x
∈
A
⟼
B
Fn
dom
⁡
x
∈
A
⟼
B
∧
dom
⁡
x
∈
A
⟼
B
∈
Fin
→
x
∈
A
⟼
B
∈
Fin
9
3
7
8
sylancr
⊢
A
∈
Fin
→
x
∈
A
⟼
B
∈
Fin