Metamath Proof Explorer


Theorem mpv

Description: Value of multiplication on positive reals. (Contributed by NM, 28-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion mpv A𝑷B𝑷A𝑷B=x|yAzBx=y𝑸z

Proof

Step Hyp Ref Expression
1 df-mp 𝑷=u𝑷,v𝑷f|guhvf=g𝑸h
2 mulclnq g𝑸h𝑸g𝑸h𝑸
3 1 2 genpv A𝑷B𝑷A𝑷B=x|yAzBx=y𝑸z