Metamath Proof Explorer


Theorem mrcsscl

Description: The closure is the minimal closed set; any closed set which contains the generators is a superset of the closure. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F=mrClsC
Assertion mrcsscl CMooreXUVVCFUV

Proof

Step Hyp Ref Expression
1 mrcfval.f F=mrClsC
2 mress CMooreXVCVX
3 2 3adant2 CMooreXUVVCVX
4 1 mrcss CMooreXUVVXFUFV
5 3 4 syld3an3 CMooreXUVVCFUFV
6 1 mrcid CMooreXVCFV=V
7 6 3adant2 CMooreXUVVCFV=V
8 5 7 sseqtrd CMooreXUVVCFUV