Metamath Proof Explorer


Theorem mrcuni

Description: Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F = mrCls C
Assertion mrcuni C Moore X U 𝒫 X F U = F F U

Proof

Step Hyp Ref Expression
1 mrcfval.f F = mrCls C
2 simpl C Moore X U 𝒫 X C Moore X
3 simpll C Moore X U 𝒫 X s U C Moore X
4 ssel2 U 𝒫 X s U s 𝒫 X
5 4 elpwid U 𝒫 X s U s X
6 5 adantll C Moore X U 𝒫 X s U s X
7 1 mrcssid C Moore X s X s F s
8 3 6 7 syl2anc C Moore X U 𝒫 X s U s F s
9 1 mrcf C Moore X F : 𝒫 X C
10 9 ffund C Moore X Fun F
11 10 adantr C Moore X U 𝒫 X Fun F
12 9 fdmd C Moore X dom F = 𝒫 X
13 12 sseq2d C Moore X U dom F U 𝒫 X
14 13 biimpar C Moore X U 𝒫 X U dom F
15 funfvima2 Fun F U dom F s U F s F U
16 11 14 15 syl2anc C Moore X U 𝒫 X s U F s F U
17 16 imp C Moore X U 𝒫 X s U F s F U
18 elssuni F s F U F s F U
19 17 18 syl C Moore X U 𝒫 X s U F s F U
20 8 19 sstrd C Moore X U 𝒫 X s U s F U
21 20 ralrimiva C Moore X U 𝒫 X s U s F U
22 unissb U F U s U s F U
23 21 22 sylibr C Moore X U 𝒫 X U F U
24 1 mrcssv C Moore X F x X
25 24 adantr C Moore X U 𝒫 X F x X
26 25 ralrimivw C Moore X U 𝒫 X x U F x X
27 9 ffnd C Moore X F Fn 𝒫 X
28 sseq1 s = F x s X F x X
29 28 ralima F Fn 𝒫 X U 𝒫 X s F U s X x U F x X
30 27 29 sylan C Moore X U 𝒫 X s F U s X x U F x X
31 26 30 mpbird C Moore X U 𝒫 X s F U s X
32 unissb F U X s F U s X
33 31 32 sylibr C Moore X U 𝒫 X F U X
34 1 mrcss C Moore X U F U F U X F U F F U
35 2 23 33 34 syl3anc C Moore X U 𝒫 X F U F F U
36 simpll C Moore X U 𝒫 X x U C Moore X
37 elssuni x U x U
38 37 adantl C Moore X U 𝒫 X x U x U
39 sspwuni U 𝒫 X U X
40 39 biimpi U 𝒫 X U X
41 40 adantl C Moore X U 𝒫 X U X
42 41 adantr C Moore X U 𝒫 X x U U X
43 1 mrcss C Moore X x U U X F x F U
44 36 38 42 43 syl3anc C Moore X U 𝒫 X x U F x F U
45 44 ralrimiva C Moore X U 𝒫 X x U F x F U
46 sseq1 s = F x s F U F x F U
47 46 ralima F Fn 𝒫 X U 𝒫 X s F U s F U x U F x F U
48 27 47 sylan C Moore X U 𝒫 X s F U s F U x U F x F U
49 45 48 mpbird C Moore X U 𝒫 X s F U s F U
50 unissb F U F U s F U s F U
51 49 50 sylibr C Moore X U 𝒫 X F U F U
52 1 mrcssv C Moore X F U X
53 52 adantr C Moore X U 𝒫 X F U X
54 1 mrcss C Moore X F U F U F U X F F U F F U
55 2 51 53 54 syl3anc C Moore X U 𝒫 X F F U F F U
56 1 mrcidm C Moore X U X F F U = F U
57 2 41 56 syl2anc C Moore X U 𝒫 X F F U = F U
58 55 57 sseqtrd C Moore X U 𝒫 X F F U F U
59 35 58 eqssd C Moore X U 𝒫 X F U = F F U