Metamath Proof Explorer


Theorem mrcun

Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F = mrCls C
Assertion mrcun C Moore X U X V X F U V = F F U F V

Proof

Step Hyp Ref Expression
1 mrcfval.f F = mrCls C
2 simp1 C Moore X U X V X C Moore X
3 mre1cl C Moore X X C
4 elpw2g X C U 𝒫 X U X
5 3 4 syl C Moore X U 𝒫 X U X
6 5 biimpar C Moore X U X U 𝒫 X
7 6 3adant3 C Moore X U X V X U 𝒫 X
8 elpw2g X C V 𝒫 X V X
9 3 8 syl C Moore X V 𝒫 X V X
10 9 biimpar C Moore X V X V 𝒫 X
11 10 3adant2 C Moore X U X V X V 𝒫 X
12 7 11 prssd C Moore X U X V X U V 𝒫 X
13 1 mrcuni C Moore X U V 𝒫 X F U V = F F U V
14 2 12 13 syl2anc C Moore X U X V X F U V = F F U V
15 uniprg U 𝒫 X V 𝒫 X U V = U V
16 7 11 15 syl2anc C Moore X U X V X U V = U V
17 16 fveq2d C Moore X U X V X F U V = F U V
18 1 mrcf C Moore X F : 𝒫 X C
19 18 ffnd C Moore X F Fn 𝒫 X
20 19 3ad2ant1 C Moore X U X V X F Fn 𝒫 X
21 fnimapr F Fn 𝒫 X U 𝒫 X V 𝒫 X F U V = F U F V
22 20 7 11 21 syl3anc C Moore X U X V X F U V = F U F V
23 22 unieqd C Moore X U X V X F U V = F U F V
24 fvex F U V
25 fvex F V V
26 24 25 unipr F U F V = F U F V
27 23 26 eqtrdi C Moore X U X V X F U V = F U F V
28 27 fveq2d C Moore X U X V X F F U V = F F U F V
29 14 17 28 3eqtr3d C Moore X U X V X F U V = F F U F V